List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/105277/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two-Dimensional Ultrathin MXene Ceramic Nanosheets for Photothermal Conversion. Nano Letters, 2017, 17, 384-391.	4.5	953
2	Nuclear-Targeted Drug Delivery of TAT Peptide-Conjugated Monodisperse Mesoporous Silica Nanoparticles. Journal of the American Chemical Society, 2012, 134, 5722-5725.	6.6	899
3	Micro/Nanoparticleâ€Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation. Advanced Materials, 2016, 28, 8097-8129.	11.1	607
4	Highly Charged Ruthenium(II) Polypyridyl Complexes as Lysosome‣ocalized Photosensitizers for Twoâ€₽hoton Photodynamic Therapy. Angewandte Chemie - International Edition, 2015, 54, 14049-14052.	7.2	368
5	Oxygen-Deficient Black Titania for Synergistic/Enhanced Sonodynamic and Photoinduced Cancer Therapy at Near Infrared-II Biowindow. ACS Nano, 2018, 12, 4545-4555.	7.3	361
6	Ruthenium(II) polypyridyl complexes as mitochondria-targeted two-photon photodynamic anticancer agents. Biomaterials, 2015, 56, 140-153.	5.7	227
7	Nuclear Permeable Ruthenium(II) β-Carboline Complexes Induce Autophagy To Antagonize Mitochondrial-Mediated Apoptosis. Journal of Medicinal Chemistry, 2010, 53, 7613-7624.	2.9	222
8	Two-photon luminescent metal complexes for bioimaging and cancer phototherapy. Coordination Chemistry Reviews, 2016, 310, 16-40.	9.5	216
9	Organelle-targeting metal complexes: From molecular design to bio-applications. Coordination Chemistry Reviews, 2019, 378, 66-86.	9.5	210
10	Targeting Nucleus DNA with a Cyclometalated Dipyridophenazineruthenium(II) Complex. Journal of Medicinal Chemistry, 2014, 57, 8971-8983.	2.9	207
11	An ERâ€Targeting Iridium(III) Complex That Induces Immunogenic Cell Death in Nonâ€Smallâ€Cell Lung Cancer. Angewandte Chemie - International Edition, 2021, 60, 4657-4665.	7.2	144
12	Selectively lighting up two-photon photodynamic activity in mitochondria with AIE-active iridium(<scp>iii</scp>) complexes. Chemical Communications, 2017, 53, 2052-2055.	2.2	131
13	Phosphorescent iridium(III) complexes as multicolor probes for specific mitochondrial imaging and tracking. Biomaterials, 2014, 35, 2-13.	5.7	118
14	A mitochondrial targeted two-photon iridium(III) phosphorescent probe for selective detection of hypochlorite in live cells and inÂvivo. Biomaterials, 2015, 53, 285-295.	5.7	117
15	A dinuclear iridium(iii) complex as a visual specific phosphorescent probe for endogenous sulphite and bisulphite in living cells. Chemical Science, 2013, 4, 4426.	3.7	108
16	A Mitochondrion‣ocalized Twoâ€Photon Photosensitizer Generating Carbon Radicals Against Hypoxic Tumors. Angewandte Chemie - International Edition, 2020, 59, 20697-20703.	7.2	99
17	Synthesis, structures, cellular uptake and apoptosis-inducing properties of highly cytotoxic ruthenium-Norharman complexes. Dalton Transactions, 2011, 40, 8611.	1.6	97
18	Oncosis-inducing cyclometalated iridium(<scp>iii</scp>) complexes. Chemical Science, 2018, 9, 5183-5190.	3.7	95

#	Article	IF	CITATIONS
19	Ruthenium(II) Complexes with 2-Phenylimidazo[4,5-f][1,10]phenanthroline Derivatives that Strongly Combat Cisplatin-Resistant Tumor Cells. Scientific Reports, 2016, 6, 19449.	1.6	93
20	Long-Term Lysosomes Tracking with a Water-Soluble Two-Photon Phosphorescent Iridium(III) Complex. ACS Applied Materials & Interfaces, 2016, 8, 12702-12710.	4.0	86
21	A facile synthesis of versatile Cu2â^'xS nanoprobe for enhanced MRI and infrared thermal/photoacoustic multimodal imaging. Biomaterials, 2015, 57, 12-21.	5.7	83
22	Cancer cell membrane camouflaged iridium complexes functionalized black-titanium nanoparticles for hierarchical-targeted synergistic NIR-II photothermal and sonodynamic therapy. Biomaterials, 2021, 275, 120979.	5.7	82
23	Cyclometalated Ruthenium(II) Anthraquinone Complexes Exhibit Strong Anticancer Activity in Hypoxic Tumor Cells. Chemistry - A European Journal, 2015, 21, 15308-15319.	1.7	79
24	A Dinuclear Ruthenium(II) Complex as a One―and Twoâ€Photon Luminescent Probe for Biological Cu ²⁺ Detection. Chemistry - A European Journal, 2013, 19, 15494-15503.	1.7	78
25	Mitochondria-specific phosphorescent imaging and tracking in living cells with an AIPE-active iridium(iii) complex. Chemical Communications, 2013, 49, 11095.	2.2	78
26	Ruthenium(II) anthraquinone complexes as two-photon luminescent probes for cycling hypoxia imaging inÂvivo. Biomaterials, 2015, 53, 522-531.	5.7	76
27	A fast and selective two-photon phosphorescent probe for the imaging of nitric oxide in mitochondria. Biomaterials, 2015, 58, 72-81.	5.7	67
28	Iridium(III) Anthraquinone Complexes as Twoâ€₽hoton Phosphorescence Probes for Mitochondria Imaging and Tracking under Hypoxia. Chemistry - A European Journal, 2016, 22, 8955-8965.	1.7	67
29	Real-time tracking mitochondrial dynamic remodeling with two-photon phosphorescent iridium (III) complexes. Biomaterials, 2016, 83, 321-331.	5.7	66
30	A Biodegradable Iridium(III) Coordination Polymer for Enhanced Twoâ€Photon Photodynamic Therapy Using an Apoptosis–Ferroptosis Hybrid Pathway. Angewandte Chemie - International Edition, 2022, 61, .	7.2	64
31	Cyclometalated Iridium(III) Complexes as Twoâ€Photon Phosphorescent Probes for Specific Mitochondrial Dynamics Tracking in Living Cells. Chemistry - A European Journal, 2015, 21, 12000-12010.	1.7	63
32	Enhanced cancer therapy by the marriage of metabolic alteration and mitochondrial-targeted photodynamic therapy using cyclometalated Ir(<scp>iii</scp>) complexes. Chemical Communications, 2017, 53, 9878-9881.	2.2	63
33	Biscylometalated iridium(<scp>iii</scp>) complexes target mitochondria or lysosomes by regulating the lipophilicity of the main ligands. Dalton Transactions, 2016, 45, 16144-16147.	1.6	60
34	Direct imaging of biological sulfur dioxide derivatives inÂvivo using a two-photon phosphorescent probe. Biomaterials, 2015, 63, 128-136.	5.7	58
35	Two-photon photodynamic ablation of tumor cells by mitochondria-targeted iridium(<scp>iii</scp>) complexes in aggregate states. Journal of Materials Chemistry B, 2017, 5, 5488-5498.	2.9	58
36	Azo-Based Iridium(III) Complexes as Multicolor Phosphorescent Probes to Detect Hypoxia in 3D Multicellular Tumor Spheroids. Scientific Reports, 2015, 5, 14837.	1.6	52

#	Article	IF	CITATIONS
37	Thiol-specific phosphorescent imaging in living cells with an azobis(2,2′-bipyridine)-bridged dinuclear iridium(iii) complex. Chemical Communications, 2013, 49, 2040.	2.2	51
38	A mitochondria-targeting hetero-binuclear Ir(<scp>iii</scp>)–Pt(<scp>ii</scp>) complex induces necrosis in cisplatin-resistant tumor cells. Chemical Communications, 2018, 54, 6268-6271.	2.2	51
39	In Vitro Transcription Inhibition by Ruthenium(II) Polypyridyl Complexes with Electropositive Ancillary Ligands. Inorganic Chemistry, 2009, 48, 5599-5601.	1.9	50
40	A mitochondria-targeting dinuclear Ir–Ru complex as a synergistic photoactivated chemotherapy and photodynamic therapy agent against cisplatin-resistant tumour cells. Chemical Communications, 2019, 55, 12547-12550.	2.2	49
41	Mitochondrial dynamics tracking with iridium(III) complexes. Current Opinion in Chemical Biology, 2018, 43, 51-57.	2.8	47
42	Necroptosis Induced by Ruthenium(II) Complexes as Dual Catalytic Inhibitors of Topoisomerase I/II. Angewandte Chemie - International Edition, 2020, 59, 16631-16637.	7.2	47
43	Cyclometalated Iridium(III) Complexes as AIE Phosphorescent Probes for Real-Time Monitoring of Mitophagy in Living Cells. Scientific Reports, 2016, 6, 22039.	1.6	46
44	Lysosome-Targeting Iridium(III) Probe with Near-Infrared Emission for the Visualization of NO/O ₂ ^{•-} Crosstalk via In Vivo Peroxynitrite Imaging. Analytical Chemistry, 2020, 92, 6003-6009.	3.2	46
45	Cyclometalated iridium(<scp>iii</scp>) complexes with imidazo[4,5-f][1,10]phenanthroline derivatives for mitochondrial imaging in living cells. Dalton Transactions, 2015, 44, 7538-7547.	1.6	45
46	Synthesis, characterization, and anticancer activity of ruthenium(II)-β-carboline complex. European Journal of Medicinal Chemistry, 2013, 70, 120-129.	2.6	43
47	Synthesis, characterization and biological evaluation of labile intercalative ruthenium(<scp>ii</scp>) complexes for anticancer drug screening. Dalton Transactions, 2016, 45, 13135-13145.	1.6	42
48	A biotinylated ruthenium(<scp>ii</scp>) photosensitizer for tumor-targeted two-photon photodynamic therapy. Chemical Communications, 2019, 55, 10972-10975.	2.2	42
49	Mitochondria-Targeting and Reversible Near-Infrared Emissive Iridium(III) Probe for <i>in vivo</i> ONOO [–] /GSH Redox Cycles Monitoring. Analytical Chemistry, 2021, 93, 8062-8070.	3.2	39
50	Redox responsive luminescent switch based on a ruthenium(II) complex [Ru(bpy)2(PAIDH)]2+. Inorganic Chemistry Communication, 2008, 11, 1048-1050.	1.8	38
51	A luminescent tetranuclear ruthenium(<scp>ii</scp>) complex as a tracking non-viral gene vector. Chemical Communications, 2013, 49, 810-812.	2.2	38
52	A ruthenium(II) β-carboline complex induced p53-mediated apoptosis in cancer cells. Biochimie, 2013, 95, 2050-2059.	1.3	37
53	RuNH2@AuNPs as two-photon luminescent probes for thiols in living cells and tissues. Biomaterials, 2014, 35, 9003-9011.	5.7	37
54	Synthesis, visible light photocleavage, antiproliferative and cellular uptake properties of ruthenium complex [Ru(phen)2(mitatp)]2+. European Journal of Medicinal Chemistry, 2012, 55, 146-154.	2.6	35

#	Article	IF	CITATIONS
55	Mitochondria-targeting cyclometalated iridium(<scp>iii</scp>) complexes for tumor hypoxic imaging and therapy. Inorganic Chemistry Frontiers, 2019, 6, 1003-1010.	3.0	35
56	Labile ruthenium(<scp>ii</scp>) complexes with extended phenyl-substituted terpyridyl ligands: synthesis, aquation and anticancer evaluation. Dalton Transactions, 2015, 44, 15602-15610.	1.6	33
57	Mitochondria-specific imaging and tracking in living cells with two-photon phosphorescent iridium(<scp>iii</scp>) complexes. Journal of Materials Chemistry B, 2015, 3, 6690-6697.	2.9	32
58	Fluorinated cyclometalated iridium(<scp>iii</scp>) complexes as mitochondria-targeted theranostic anticancer agents. Dalton Transactions, 2017, 46, 6734-6744.	1.6	32
59	Mitochondrial Dynamics Tracking with Two-Photon Phosphorescent Terpyridyl Iridium(III) Complexes. Scientific Reports, 2016, 6, 20887.	1.6	31
60	Cyclometalated iridium(III) complexes as mitochondria-targeted anticancer agents. Biochimie, 2016, 125, 186-194.	1.3	31
61	Nucleus-targeting ultrasmall ruthenium(<scp>iv</scp>) oxide nanoparticles for photoacoustic imaging and low-temperature photothermal therapy in the NIR-II window. Chemical Communications, 2020, 56, 3019-3022.	2.2	30
62	Dinuclear iridium(iii) complexes as phosphorescent trackers to monitor mitochondrial dynamics. Journal of Materials Chemistry B, 2015, 3, 3306-3314.	2.9	28
63	An ERâ€Targeting Iridium(III) Complex That Induces Immunogenic Cell Death in Nonâ€&mallâ€Cell Lung Cancer. Angewandte Chemie, 2021, 133, 4707-4715.	1.6	28
64	Aggregation-induced emission of ruthenium(II) polypyridyl complex [Ru(bpy)2(pzta)]2+. Inorganic Chemistry Communication, 2010, 13, 1140-1143.	1.8	27
65	A dendritic nano-sized hexanuclear ruthenium(II) complex as a one- and two-photon luminescent tracking non-viral gene vector. Scientific Reports, 2015, 5, 10707.	1.6	24
66	Cyclometalated Ir ^{III} Complexes as Mitochondriaâ€Targeted Photodynamic Anticancer Agents. European Journal of Inorganic Chemistry, 2017, 2017, 1764-1771.	1.0	24
67	Supramolecular Assembly of An Organoplatinum(II) Complex with Ratiometric Dual Emission for Twoâ€Photon Bioimaging. Angewandte Chemie - International Edition, 2021, 60, 4150-4157.	7.2	24
68	Mitochondria-targeted Ir@AuNRs as bifunctional therapeutic agents for hypoxia imaging and photothermal therapy. Chemical Communications, 2019, 55, 10273-10276.	2.2	23
69	Ruthenium(<scp>ii</scp>) complexes as bioorthogonal two-photon photosensitizers for tumour-specific photodynamic therapy against triple-negative breast cancer cells. Chemical Communications, 2021, 57, 4408-4411.	2.2	19
70	Autophagy-Dependent Apoptosis Induced by Apoferritin–Cu(II) Nanoparticles in Multidrug-Resistant Colon Cancer Cells. ACS Applied Materials & Interfaces, 2021, 13, 38959-38968.	4.0	17
71	A Mitochondrion‣ocalized Twoâ€₽hoton Photosensitizer Generating Carbon Radicals Against Hypoxic Tumors. Angewandte Chemie, 2020, 132, 20878-20884	1.6	16
72	Nano-assembly of ruthenium(<scp>ii</scp>) photosensitizers for endogenous glutathione depletion and enhanced two-photon photodynamic therapy. Nanoscale, 2021, 13, 7590-7599.	2.8	16

#	Article	lF	CITATIONS
73	DNA interaction of ruthenium(<scp>ii</scp>) complexes with imidazo[4,5- <i>f</i>][1,10]phenanthroline derivatives. Dalton Transactions, 2019, 48, 3914-3921.	1.6	14
74	lridium(<scp>iii</scp>) complexes as mitochondrial topoisomerase inhibitors against cisplatin-resistant cancer cells. Chemical Communications, 2021, 57, 8308-8311.	2.2	12
75	Synthesis, characterization, electrochemical and photophysical properties of ruthenium(II) complexes containing 3-amino-1,2,4-triazino[5,6-f]-1,10-phenanthroline. Journal of Molecular Structure, 2008, 890, 203-208.	1.8	10
76	Synthesis, DNA-binding and DNA-photocleavage properties of ruthenium(II) mixed-polypyridyl complex [Ru(tbz)2(dppz)]2+. Journal of Molecular Structure, 2008, 892, 485-489.	1.8	10
77	Necroptosis-inducing iridium(<scp>iii</scp>) complexes as regulators of cyclin-dependent kinases. Inorganic Chemistry Frontiers, 2021, 8, 1788-1794.	3.0	10
78	Cyclometalated Iridium(III) Complexes as Mitochondriaâ€targeting Photosensitizers against Cisplatinâ€resistant Cells ^{â€} . Photochemistry and Photobiology, 2022, 98, 85-91.	1.3	9
79	A Biodegradable Iridium(III) Coordination Polymer for Enhanced Twoâ€Photon Photodynamic Therapy Using an Apoptosis–Ferroptosis Hybrid Pathway. Angewandte Chemie, 2022, 134, .	1.6	9
80	A pH-responsive iridium(<scp>iii</scp>) two-photon photosensitizer loaded CaCO ₃ nanoplatform for combined Ca ²⁺ overload and photodynamic therapy. Inorganic Chemistry Frontiers, 2022, 9, 4171-4183.	3.0	9
81	Interfering with DNA Highâ€Order Structures using Chiral Ruthenium(II) Complexes. Chemistry - A European Journal, 2018, 24, 690-698.	1.7	8
82	Chiral rhodium(<scp>iii</scp>)–azobenzene complexes as photoswitchable DNA molecular locks. Chemical Communications, 2022, 58, 4324-4327.	2.2	7
83	Supramolecular Assembly of An Organoplatinum(II) Complex with Ratiometric Dual Emission for Twoâ€Photon Bioimaging. Angewandte Chemie, 2021, 133, 4196-4203.	1.6	6
84	Necroptosis Induced by Ruthenium(II) Complexes as Dual Catalytic Inhibitors of Topoisomerase I/II. Angewandte Chemie, 2020, 132, 16774.	1.6	4
85	Synthesis, crystal structures, electrochemical and spectroscopic properties of ruthenium(II) complexes containing diamino-1,3,5-triazine derivatives. Science China Chemistry, 2010, 53, 2099-2105.	4.2	1