Masanobu Naito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1052390/publications.pdf

Version: 2024-02-01

147566 106150 4,521 104 31 citations h-index papers

65 g-index 112 112 112 5650 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chemical Communications, 2013, 49, 2521.	2.2	474
2	Chemical-Stimuli-Controllable Circularly Polarized Luminescence from Anion-Responsive □-Conjugated Molecules. Journal of the American Chemical Society, 2011, 133, 9266-9269.	6.6	385
3	Enzyme nanoarchitectonics: organization and device application. Chemical Society Reviews, 2013, 42, 6322.	18.7	376
4	Regulation of \hat{l}^2 -Sheet Structures within Amyloid-Like \hat{l}^2 -Sheet Assemblage from Tripeptide Derivatives. Journal of the American Chemical Society, 1998, 120, 12192-12199.	6.6	208
5	Facile Synthetic Route to Highly Luminescent Sila[7]helicene. Organic Letters, 2013, 15, 2104-2107.	2.4	205
6	Large Cs adsorption capability of nanostructured Prussian Blue particles with high accessible surface areas. Journal of Materials Chemistry, 2012, 22, 18261.	6.7	174
7	Circularly Polarized Luminescent CdS Quantum Dots Prepared in a Protein Nanocage. Angewandte Chemie - International Edition, 2010, 49, 7006-7009.	7.2	152
8	Circularly Polarized Luminescence of a Fluorescent Chiral Binaphtylene–Perylenebiscarboxydiimide Dimer. ChemPhysChem, 2007, 8, 1465-1468.	1.0	120
9	Circularly Polarized Luminescence in Supramolecular Assemblies of Chiral Bichromophoric Perylene Bisimides. Chemistry - A European Journal, 2013, 19, 14090-14097.	1.7	119
10	Circularly Polarized Luminescence of Eu(III) Complexes with Point- and Axis-Chiral Ligands Dependent on Coordination Structures. Inorganic Chemistry, 2009, 48, 11242-11250.	1.9	106
11	Synthesis and Properties of [7]Helicene-like Compounds Fused with a Fluorene Unit. Organic Letters, 2016, 18, 3654-3657.	2.4	104
12	Asymmetric Induction in the Preparation of Helical Receptor–Anion Complexes: Ionâ€Pair Formation with Chiral Cations. Angewandte Chemie - International Edition, 2012, 51, 7967-7971.	7.2	102
13	Rhodiumâ€Catalyzed Asymmetric Synthesis of Siliconâ€Stereogenic Dibenzosiloles by Enantioselective [2+2+2] Cycloaddition. Angewandte Chemie - International Edition, 2015, 54, 1616-1620.	7.2	102
14	Durable and Flexible Superhydrophobic Materials: Abrasion/Scratching/Slicing/Droplet Impacting/Bending/Twisting-Tolerant Composite with Porcupinefish-Like Structure. ACS Applied Materials & Drophy: 11, 32381-32389.	4.0	97
15	Chiroptical generation and inversion during the mirror-symmetry-breaking aggregation of dialkylpolysilanes due to limonene chirality. Chemical Communications, 2012, 48, 6636.	2.2	87
16	Confinement of Single Polysilane Chains in Coordination Nanospaces. Journal of the American Chemical Society, 2015, 137, 5231-5238.	6.6	70
17	Stiffness- and Conformation-Dependent Polymer Wrapping onto Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2008, 130, 16697-16703.	6.6	69
18	Achiral guest-induced chiroptical changes of a planar-chiral pillar[5]arene containing one π-conjugated unit. Chemical Communications, 2013, 49, 8782.	2.2	63

#	Article	IF	Citations
19	Helical Polymer Command Surface:Â Thermodriven Chiroptical Transfer and Amplification in Binary Polysilane Film System. Macromolecules, 2004, 37, 3081-3083.	2.2	59
20	Prediction and optimization of epoxy adhesive strength from a small dataset through active learning. Science and Technology of Advanced Materials, 2019, 20, 1010-1021.	2.8	59
21	Homogeneously Dispersed Polyrotaxane in Epoxy Adhesive and Its Improvement in the Fracture Toughness. Macromolecules, 2019, 52, 2464-2475.	2.2	51
22	Naked-Eye Discrimination of Methanol from Ethanol Using Composite Film of Oxoporphyrinogen and Layered Double Hydroxide. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5927-5930.	4.0	50
23	Hydrophobized plant polyphenols: self-assembly and promising antibacterial, adhesive, and anticorrosion coatings. Chemical Communications, 2016, 52, 312-315.	2.2	49
24	Modulated Supramolecular Assemblies Composed of Tripeptide Derivatives:Â Formation of Micrometer-Scale Rods, Nanometer-Size Needles, and Regular Patterns with Molecular-Level Flatness from the Same Compound. Langmuir, 2000, 16, 4929-4939.	1.6	48
25	Toughening Effect of Rodlike Cellulose Nanocrystals in Epoxy Adhesive. ACS Applied Polymer Materials, 2020, 2, 1234-1243.	2.0	38
26	Spectroscopic Evidence of Siâ^'H End Groups in Dialkylpolysilanes Synthesized via Wurtz Coupling. Macromolecules, 2004, 37, 367-370.	2.2	37
27	Highly Crystallized Nanometerâ€Sized Zeolite A with Large Cs Adsorption Capability for the Decontamination of Water. Chemistry - an Asian Journal, 2014, 9, 759-763.	1.7	34
28	Molecular cavity nanoarchitectonics for biomedical application and mechanical cavity manipulation. CrystEngComm, 2016, 18, 4890-4899.	1.3	34
29	Broadband Plasmon Resonance Enhanced Third-Order Optical Nonlinearity in Refractory Titanium Nitride Nanostructures. ACS Photonics, 2018, 5, 3452-3458.	3.2	33
30	Bioinspired adhesive polymer coatings for efficient and versatile corrosion resistance. RSC Advances, 2015, 5, 15977-15984.	1.7	31
31	Thermo-resettable cross-linked polymers for reusable/removable adhesives. Polymer Chemistry, 2018, 9, 5559-5565.	1.9	30
32	Weak noncovalent Si···FC interactions stabilized fluoroalkylated rod-like polysilanes as ultrasensitive chemosensors. Journal of Polymer Science Part A, 2006, 44, 5060-5075.	2.5	28
33	Helical Shape Memory of Screw-Sense Switchable Polysilanes in Cast Films. Chemistry of Materials, 2004, 16, 3919-3923.	3.2	27
34	pH responsive smart carrier of [60] fullerene with 6-amino-cyclodextrin inclusion complex for photodynamic therapy. Journal of Materials Chemistry, 2012, 22, 22610.	6.7	27
35	Switching in molecular shapes: main chain length driven rod–circle transition of isolated helical polysilanes. Chemical Communications, 2006, , 2705-2707.	2.2	26
36	Highly Fluorescent Slipped-Cofacial Phthalocyanine Dimer as a Shallow Inclusion Complex with α-Cyclodextrin. Journal of Physical Chemistry A, 2012, 116, 5139-5144.	1.1	26

3

#	Article	IF	Citations
37	Chiroptical Control in Helical Receptor–Anion Complexes. Organic Letters, 2013, 15, 6006-6009.	2.4	26
38	Chirality Induction by Formation of Assembled Structures Based on Anionâ€Responsive Ï€â€Conjugated Molecules. Chemistry - A European Journal, 2013, 19, 16263-16271.	1.7	26
39	Polysilanes on surfaces. Soft Matter, 2008, 4, 211-223.	1.2	25
40	Novel Molecular Weight and Solvatochromisms in Poly(methyl-3,3,3-trifluoropropylsilane) Induced by Cooperative Through-Space Si···Fâ~'C Interactions. Macromolecules, 2004, 37, 5873-5879.	2.2	24
41	Circularly polarized luminescence from chiral Eu(III) Complex with high emission quantum yield. Journal of Alloys and Compounds, 2009, 488, 599-602.	2.8	22
42	Time-Resolved Observation of Chiral-Index-Selective Wrapping on Single-Walled Carbon Nanotube with Non-Aromatic Polysilane. Journal of the American Chemical Society, 2013, 135, 2374-2383.	6.6	22
43	Rational design of a biomimetic glue with tunable strength and ductility. Polymer Chemistry, 2017, 8, 1654-1663.	1.9	22
44	Oligoamylose-entwined porphyrin: excited-state induced-fit for chirality induction. Chemical Communications, 2016, 52, 2481-2484.	2.2	21
45	Multiblock Polysilane Copolymers:  One-Pot Wurtz Synthesis, Fluoride Anion-Induced Block-Selective Scission Experiments, and Spectroscopic Characterization. Macromolecules, 2008, 41, 1952-1960.	2.2	20
46	Strengthening epoxy adhesives at elevated temperatures based on dynamic disulfide bonds. Materials Advances, 2020, 1, 3182-3188.	2.6	20
47	Reversible Photogeneration of a Stable Chiral Radical-Pair from a Fast Photochromic Molecule. Journal of Physical Chemistry Letters, 2011, 2, 2680-2682.	2.1	19
48	Liquid Marble Patchwork on Superâ€Repellent Surface. Advanced Functional Materials, 2021, 31, 2010957.	7.8	19
49	Polyfluorene nano-rings and nano-dots on mica surfaces: evaporation-induced polymer self-assembly and photoluminescence properties of the assemblies. Soft Matter, 2008, 4, 2396.	1.2	18
50	Programmed Highâ€Holeâ€Mobility Supramolecular Polymers from Diskâ€Shaped Molecules. Advanced Functional Materials, 2010, 20, 3941-3947.	7.8	18
51	Effect of Solvation on Induce-Fit Molecular Recognition in Supercritical Fluid to Organic Crystals Immobilized on a Quartz Crystal Microbalance. Journal of the American Chemical Society, 2001, 123, 11037-11041.	6.6	17
52	First observation of a smectic A–cholesteric phase transition in a thermotropic liquid crystal consisting of a rigid-rod helical polysilane. Liquid Crystals, 2004, 31, 279-283.	0.9	17
53	Pyridyl-cyclodextrin for ultra-hydrosolubilization of [60] fullerene. Chemical Communications, 2014, 50, 8339-8342.	2.2	17
54	Exceptional Robustness and Selfâ€Reconfigurability of Liquid Marbles on Superhydrophobic Substrate. Advanced Materials Interfaces, 2020, 7, 2000160.	1.9	17

#	Article	IF	CITATIONS
55	Vertically-oriented conjugated polymer arrays in mesoporous aluminavia simple drop-casting and appearance of anisotropic photoluminescence. Chemical Communications, 2012, 48, 549-551.	2.2	16
56	Apoptotic Cell Membrane-Inspired Polymer for Immunosuppression. ACS Macro Letters, 2017, 6, 1020-1024.	2.3	16
57	Environmentally friendly recycling system for epoxy resin with dynamic covalent bonding. Science and Technology of Advanced Materials, 2021, 22, 532-542.	2.8	16
58	Evolution of and Disparity among Biomimetic Superhydrophobic Surfaces with Gecko, Petal, and Lotus Effect. Small, 2022, 18, e2200349.	5.2	16
59	Evaluation of Global Conformation of Polydialkylsilane Using Correlation between Persistence Length and Excitonic Absorption. Macromolecules, 2011, 44, 6568-6573.	2.2	15
60	Room-temperature one-step immobilization of rod-like helical polymer onto hydrophilic substrates. Chemical Communications, 2004, , 276-277.	2.2	12
61	Ambidextrous optically active copper(ii) phthalocyanine supramolecules induced by peripheral group homochirality. New Journal of Chemistry, 2010, 34, 2310.	1.4	12
62	Enhancement of the complex third-order nonlinear optical susceptibility in Au nanorods. Optics Express, 2019, 27, 19168.	1.7	12
63	Switching in Orientation of Macromolecular Helical Rod Silicon on the Solid Surfaces. Macromolecules, 2007, 40, 648-652.	2.2	11
64	Monovalent Anion Indicator Based on Fluorescence Quenching of Helical Fluorinated Poly(dialkylsilanes). Macromolecules, 2010, 43, 7919-7923.	2.2	11
65	Natural Polyphenol Surfactants: Solvent-Mediated Spherical Nanocontainers and Their Stimuli-Responsive Release of Molecular Payloads. Chemistry of Materials, 2018, 30, 8025-8033.	3.2	11
66	Alternating Copolymers of Vinyl Catechol or Vinyl Phenol with Alkyl Maleimide for Adhesive and Water-Repellent Coating Materials. ACS Applied Polymer Materials, 2020, 2, 4604-4612.	2.0	11
67	Versatile self-assembled hybrid systems with exotic structures and unique functions. Current Opinion in Colloid and Interface Science, 2011, 16, 482-490.	3.4	10
68	Spectral dependence of the third-order optical susceptibility of Au nanostructures: Experiments and first-principles calculations. Physical Review B, 2019, 100, .	1.1	10
69	Mechanochromism of dynamic disulfide bonds as a chromophoric indicator of adhesion strength for epoxy adhesive. Materials Advances, 2021, 2, 5047-5051.	2.6	10
70	Nucleobase molecular recognition in supercritical carbon dioxide by using a highly sensitive 27 MHz quartz-crystal microbalance. Chemical Communications, 2000, , 45-46.	2.2	8
71	Polysilane Organogel with Hierarchical Structures Formed by Weak Intra-/Inter-chain Si/FC and van der Waals Interactions. Polymer Journal, 2008, 40, 317-326.	1.3	7
72	Chain dimensions and intermolecular interactions of polysilanes bearing alkyl side groups over the UV thermochromic temperature. Polymer, 2015, 68, 221-226.	1.8	7

#	Article	IF	CITATIONS
73	Combinational Effect of Cell Adhesion Biomolecules and Their Immobilized Polymer Property to Enhance Cell-Selective Adhesion. International Journal of Polymer Science, 2016, 2016, 1-9.	1.2	7
74	Dispersion state of carbon black in polystyrene produced with different dispersion media and its effects on composite rheological properties. Polymer Journal, 2019, 51, 275-281.	1.3	7
75	AFM Observation of a Supramolecular Rod-like Structure of Bilayer Membrane Formed from Tripeptide-Containing Amphiphiles. Chemistry Letters, 1998, 27, 493-494.	0.7	6
76	FT-IR, TEM, and AFM studies of supramolecular architecture formed by tripeptide-containing monoalkyl amphiphiles. Polymers for Advanced Technologies, 2000, 11, 856-864.	1.6	6
77	Combinational Effects of Polymer Viscoelasticity and Immobilized Peptides on Cell Adhesion to Cell-selective Scaffolds. Analytical Sciences, 2016, 32, 1195-1202.	0.8	6
78	Topological alternation from structurally adaptable to mechanically stable crosslinked polymer. Science and Technology of Advanced Materials, 2022, 23, 66-75.	2.8	6
79	Highly Organized Phthalocyanine Assembly onto Gold Surface through Spontaneous Polymerization. Chemistry Letters, 2007, 36, 304-305.	0.7	5
80	Preparation of phthalocyanine ultrathin film via layer-by-layer assembly. Thin Solid Films, 2009, 518, 625-628.	0.8	5
81	Freestanding Tough Glassy Membranes Produced by Simple Solvent Casting of Polyrotaxane Derivatives. ACS Applied Polymer Materials, 2021, 3, 4177-4183.	2.0	5
82	Understanding the evolution of a de novo molecule generator via characteristic functional group monitoring. Science and Technology of Advanced Materials, 2022, 23, 352-360.	2.8	5
83	Selective adsorption of globulin on nanofiber meshes for immunoadsorption therapy. New Journal of Chemistry, 2018, 42, 2916-2922.	1.4	4
84	Microbubble flows in superwettable fluidic channels. RSC Advances, 2019, 9, 21220-21224.	1.7	4
85	Postprogrammable Network Topology with Broad Gradients of Mechanical Properties for Reliable Polymer Material Engineering. Chemistry of Materials, 2021, 33, 6876-6884.	3.2	4
86	Coalescence delay of microbubbles on superhydrophobic/superhydrophilic surfaces underwater. Applied Physics Letters, 2018, 113, 033705.	1.5	3
87	Global snapshot of the effects of the COVID-19 pandemic on the research activities of materials scientists between Spring and Autumn 2020. Science and Technology of Advanced Materials, 2021, 22, 173-184.	2.8	3
88	Machine-Learning-Based phase diagram construction for high-throughput batch experiments. Science and Technology of Advanced Materials Methods, 2022, 2, 153-161.	0.4	3
89	Poly(fluoroalkylsilane-b-dialkylsilane)-based chemosensory material for fluoride with high sensitivity, selectivity and solubility. Synthetic Metals, 2009, 159, 784-787.	2.1	2
90	Chemical Degelation of Polysilane Organogel by Selective Scission of Silicon Main Chain by Fluoride Anion. Chemistry Letters, 2009, 38, 414-415.	0.7	2

#	Article	IF	CITATIONS
91	Vertically Aligned Multilayer Films of Monodispersed Helical Polypeptides with Micrometer Thickness via Simple Cast. Langmuir, 2010, 26, 9166-9169.	1.6	2
92	Orientational and Structural Transitions of Semiflexible Polysilanes on the Surfaces. Kobunshi Ronbunshu, 2008, 65, 199-207.	0.2	1
93	Lightâ€Induced Topological Patterning toward 3D Shapeâ€Reconfigurable Origami. Small, 2022, 18, 2107078.	5.2	1
94	Lightâ€Induced Topological Patterning toward 3D Shapeâ€Reconfigurable Origami (Small 14/2022). Small, 2022, 18, .	5.2	1
95	Novel Approach for Biofouling-Release Materials with Interpenetrating Polymer Networks. Materials Research Society Symposia Proceedings, 2005, 897, 1.	0.1	O
96	Novel Strategy for Antifouling Paints with Zero Endocrine Disrupting Chemical (EDC) Elution based on Interpenetrating Polymer Networks (IPNs). Materials Research Society Symposia Proceedings, 2005, 873, 1.	0.1	0
97	Preparation of Fluoroalkylpolysilanes with Wurtz-type Condensation Polymerization and Elucidation of their Organogelation Mechanism. Kobunshi Ronbunshu, 2009, 66, 298-311.	0.2	0
98	Liquid Marble Patchwork: Liquid Marble Patchwork on Superâ€Repellent Surface (Adv. Funct. Mater.) Tj ETQq0 0	0 rgBT /C	verlock 10 Tf
99	Biomimetics: New Approach of Adhesive Materials. Seikei-Kakou, 2018, 30, 113-116.	0.0	0
100	Anticorrosion and Antibacterial Coating Inspired byAstringent Persimmon. Journal of the Adhesion Society of Japan, 2018, 54, 58-64.	0.0	0
101	Emerging Technology, Multimaterial Fabrication. Seikei-Kakou, 2018, 30, 379-382.	0.0	0
102	Impact of Telechelic Polymer Precursors on the Viscoelastic Properties of Vitrimers. Macromolecular Chemistry and Physics, 2022, 223, 2100433.	1.1	0
103	Quantitative Fluorescent Detection of Antibacterial Activity with Pyrene-Bearing Tannic Acid. Bulletin of the Chemical Society of Japan, 2022, 95, 748-750.	2.0	0
104	Evolution of and Disparity among Biomimetic Superhydrophobic Surfaces with Gecko, Petal, and Lotus Effect (Small 18/2022). Small, 2022, 18, .	5.2	0