
Xianfeng Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10523407/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Life cycle assessment of lithium sulfur battery for electric vehicles. Journal of Power Sources, 2017, 343, 284-295.	7.8	164
2	Enhanced photovoltaic performance of perovskite CH ₃ NH ₃ PbI ₃ solar cells with freestanding TiO ₂ nanotube array films. Chemical Communications, 2014, 50, 6368-6371.	4.1	156
3	A three-dimensionally interconnected carbon nanotube/layered MoS2 nanohybrid network for lithium ion battery anode with superior rate capacity and long-cycle-life. Nano Energy, 2015, 16, 10-18.	16.0	155
4	Life Cycle Environmental Impact of High-Capacity Lithium Ion Battery with Silicon Nanowires Anode for Electric Vehicles. Environmental Science & amp; Technology, 2014, 48, 3047-3055.	10.0	134
5	3D dual-confined sulfur encapsulated in porous carbon nanosheets and wrapped with graphene aerogels as a cathode for advanced lithium sulfur batteries. Nanoscale, 2016, 8, 8228-8235.	5.6	99
6	A Multilayered Silicon-Reduced Graphene Oxide Electrode for High Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 7855-7862.	8.0	82
7	Comparison of life cycle environmental impacts of different perovskite solar cell systems. Solar Energy Materials and Solar Cells, 2017, 166, 9-17.	6.2	79
8	A Scalable Graphene Sulfur Composite Synthesis for Rechargeable Lithium Batteries with Good Capacity and Excellent Columbic Efficiency. ACS Applied Materials & Interfaces, 2014, 6, 4154-4159.	8.0	77
9	Life Cycle Assessment of Titania Perovskite Solar Cell Technology for Sustainable Design and Manufacturing. ChemSusChem, 2015, 8, 3882-3891.	6.8	70
10	Controllable synthesis of MoO3-deposited TiO2 nanotubes with enhanced lithium-ion intercalation performance. Journal of Power Sources, 2014, 246, 305-312.	7.8	64
11	Growth characteristics and influencing factors of 3D hierarchical flower-like SnS 2 nanostructures and their superior lithium-ion intercalation performance. Journal of Alloys and Compounds, 2016, 658, 190-197.	5.5	56
12	Enhanced capacitive performance of TiO2 nanotubes with molybdenum oxide coating. Applied Surface Science, 2014, 300, 165-170.	6.1	52
13	Free standing TiO2 nanotube array electrodes with an ultra-thin Al2O3 barrier layer and TiCl4 surface modification for highly efficient dye sensitized solar cells. Nanoscale, 2013, 5, 10438.	5.6	49
14	Hybrid CdSe/TiO2 nanowire photoelectrodes: Fabrication and photoelectric performance. Journal of Materials Chemistry, 2011, 21, 8749.	6.7	41
15	Atomic Layer Deposition of Alumina Coatings onto SnS2 for Lithium-Ion Battery Applications. Electrochimica Acta, 2017, 242, 117-124.	5.2	35
16	A TiO ₂ nanotube network electron transport layer for high efficiency perovskite solar cells. Physical Chemistry Chemical Physics, 2017, 19, 4956-4961.	2.8	33
17	Carbon nanotube-assisted growth of single-/multi-layer SnS ₂ and SnO ₂ nanoflakes for high-performance lithium storage. RSC Advances, 2015, 5, 58514-58521.	3.6	31
18	Enhancing the performance of free-standing TiO2 nanotube arrays based dye-sensitized solar cells via ultraprecise control of the nanotube wall thickness. Journal of Power Sources, 2013, 240, 503-509.	7.8	28

XIANFENG GAO

#	Article	IF	CITATIONS
19	Effects of amorphous and crystalline MoO ₃ coatings on the Li-ion insertion behavior of a TiO ₂ nanotube anode for lithium ion batteries. RSC Advances, 2014, 4, 4055-4062.	3.6	24
20	Core–shell CdTe–TiO2 nanostructured solar cell. Journal of Materials Chemistry, 2012, 22, 10441.	6.7	23
21	Embedding Co ₂ P Nanoparticles in N-Doped Carbon Nanotubes Grown on Porous Carbon Polyhedra for High-Performance Lithium-Ion Batteries. Industrial & Engineering Chemistry Research, 2018, 57, 13019-13025.	3.7	21
22	A comparative study of enhanced electrochemical stability of tin–nickel alloy anode for high-performance lithium ion battery. Journal of Alloys and Compounds, 2014, 617, 464-471.	5.5	17
23	Energy Modeling of Electrochemical Anodization Process of Titanium Dioxide Nanotubes. ACS Sustainable Chemistry and Engineering, 2014, 2, 404-410.	6.7	14
24	Core-shell structured Si/ZnO photovoltaics. Materials Letters, 2015, 140, 59-63.	2.6	9
25	Micro Silicon–Graphene–Carbon Nanotube Anode for Full Cell Lithium-ion Battery. Journal of Electrochemical Energy Conversion and Storage, 2019, 16, .	2.1	9
26	Sustainability Analysis of Silicon Nanowire Fabrication for High Performance Lithium Ion Battery Anode. Procedia Manufacturing, 2017, 7, 151-156.	1.9	3
27	Nanoparticle Emissions From Metal-Assisted Chemical Etching of Silicon Nanowires for Lithium Ion Batteries. Journal of Micro and Nano-Manufacturing, 2019, 7, .	0.7	3
28	Environmental Sustainability of Metal-Assisted Chemical Etching of Silicon Nanowires for Lithium-Ion Battery Anode. Journal of Electrochemical Energy Conversion and Storage, 2020, 17, .	2.1	1