Dean G Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10522511/publications.pdf

Version: 2024-02-01

96 9,884 48 83 g-index

102 102 102 102 12759

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Slow-cycling (dormant) cancer cells in therapy resistance, cancer relapse and metastasis. Seminars in Cancer Biology, 2022, 78, 90-103.	4.3	53
2	Understanding and targeting prostate cancer cell heterogeneity and plasticity. Seminars in Cancer Biology, 2022, 82, 68-93.	4.3	31
3	MicroRNA-34a: Potent Tumor Suppressor, Cancer Stem Cell Inhibitor, and Potential Anticancer Therapeutic. Frontiers in Cell and Developmental Biology, 2021, 9, 640587.	1.8	67
4	Androgen receptor (AR) heterogeneity in prostate cancer and therapy resistance. Cancer Letters, 2021, 518, 1-9.	3.2	49
5	Cancer stem cells: advances in biology and clinical translation—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 142-163.	1.8	8
6	Intron retention is a hallmark and spliceosome represents a therapeutic vulnerability in aggressive prostate cancer. Nature Communications, 2020, 11, 2089.	5.8	83
7	LRIG1 is a pleiotropic androgen receptor-regulated feedback tumor suppressor in prostate cancer. Nature Communications, 2019, 10, 5494.	5.8	13
8	Tumor Dormancy and Slow-Cycling Cancer Cells. Advances in Experimental Medicine and Biology, 2019, 1164, 199-206.	0.8	41
9	Histone 2B-GFP Label-Retaining Prostate Luminal Cells Possess Progenitor Cell Properties and Are Intrinsically Resistant to Castration. Stem Cell Reports, 2018, 10, 228-242.	2.3	36
10	Prostate Luminal Progenitor Cells in Development and Cancer. Trends in Cancer, 2018, 4, 769-783.	3.8	54
11	Linking prostate cancer cell AR heterogeneity to distinct castration and enzalutamide responses. Nature Communications, 2018, 9, 3600.	5.8	96
12	Concise Review: Prostate Cancer Stem Cells: Current Understanding. Stem Cells, 2018, 36, 1457-1474.	1.4	90
13	Cancer stem cells: Regulation programs, immunological properties and immunotherapy. Seminars in Cancer Biology, 2018, 52, 94-106.	4.3	100
14	MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nature Communications, 2017, 8, 14270.	5.8	187
15	Cellular determinants and microenvironmental regulation of prostate cancer metastasis. Seminars in Cancer Biology, 2017, 44, 83-97.	4.3	54
16	Numbâ [^] /low Enriches a Castration-Resistant Prostate Cancer Cell Subpopulation Associated with Enhanced Notch and Hedgehog Signaling. Clinical Cancer Research, 2017, 23, 6744-6756.	3.2	36
17	Developing a Novel Two-Dimensional Culture System to Enrich Human Prostate Luminal Progenitors that Can Function as a Cell of Origin for Prostate Cancer. Stem Cells Translational Medicine, 2017, 6, 748-760.	1.6	19
18	Molecular determinants of prostate cancer metastasis. Oncotarget, 2017, 8, 88211-88231.	0.8	19

#	Article	IF	Citations
19	Transgenic overexpression of NanogP8 in the mouse prostate is insufficient to initiate tumorigenesis but weakly promotes tumor development in the Hi-Myc mouse model. Oncotarget, 2017, 8, 52746-52760.	0.8	4
20	miR-199a-3p targets stemness-related and mitogenic signaling pathways to suppress the expansion and tumorigenic capabilities of prostate cancer stem cells. Oncotarget, 2016, 7, 56628-56642.	0.8	48
21	Deep RNA-Seq analysis reveals unexpected features of human prostate basal epithelial cells. Genomics Data, 2016, 7, 318-320.	1.3	0
22	Defining a Population of Stem-like Human Prostate Cancer Cells That Can Generate and Propagate Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2016, 22, 4505-4516.	3.2	78
23	NANOG reprograms prostate cancer cells to castration resistance via dynamically repressing and engaging the AR/FOXA1 signaling axis. Cell Discovery, 2016, 2, 16041.	3.1	41
24	Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer. Nature Communications, 2016, 7, 10798.	5.8	166
25	Longitudinal tracking of subpopulation dynamics and molecular changes during LNCaP cell castration and identification of inhibitors that could target the PSAâ°'/lo castration-resistant cells. Oncotarget, 2016, 7, 14220-14240.	0.8	17
26	Regulation of NANOG in cancer cells. Molecular Carcinogenesis, 2015, 54, 679-687.	1.3	79
27	Cancer stem cells and cell size: A causal link?. Seminars in Cancer Biology, 2015, 35, 191-199.	4.3	69
28	Concise Review: NANOG in Cancer Stem Cells and Tumor Development: An Update and Outstanding Questions. Stem Cells, 2015, 33, 2381-2390.	1.4	177
29	Cell-of-Origin of Cancer versus Cancer Stem Cells: Assays and Interpretations. Cancer Research, 2015, 75, 4003-4011.	0.4	198
30	Androgen receptor and prostate cancer stem cells: biological mechanisms and clinical implications. Endocrine-Related Cancer, 2015, 22, T209-T220.	1.6	48
31	Cytotoxicity of Human Endogenous Retrovirus K–Specific T Cells toward Autologous Ovarian Cancer Cells. Clinical Cancer Research, 2015, 21, 471-483.	3.2	70
32	Systematic dissection of phenotypic, functional, and tumorigenic heterogeneity of human prostate cancer cells. Oncotarget, 2015, 6, 23959-23986.	0.8	65
33	Nanog1 in NTERA-2 and Recombinant NanogP8 from Somatic Cancer Cells Adopt Multiple Protein Conformations and Migrate at Multiple M.W Species. PLoS ONE, 2014, 9, e90615.	1.1	11
34	Tumor-suppressive functions of 15-Lipoxygenase-2 and RB1CC1 in prostate cancer. Cell Cycle, 2014, 13, 1798-1810.	1.3	22
35	miRNA-128 Suppresses Prostate Cancer by Inhibiting BMI-1 to Inhibit Tumor-Initiating Cells. Cancer Research, 2014, 74, 4183-4195.	0.4	128
36	Cancer stem cells and radioresistance. International Journal of Radiation Biology, 2014, 90, 615-621.	1.0	214

#	Article	IF	CITATIONS
37	The microRNA miR-34a Inhibits Non-Small Cell Lung Cancer (NSCLC) Growth and the CD44hi Stem-Like NSCLC Cells. PLoS ONE, 2014, 9, e90022.	1.1	102
38	Bim, a Proapoptotic Protein, Up-regulated via Transcription Factor E2F1-dependent Mechanism, Functions as a Prosurvival Molecule in Cancer. Journal of Biological Chemistry, 2013, 288, 368-381.	1.6	68
39	New insights into prostate cancer stem cells. Cell Cycle, 2013, 12, 579-586.	1.3	65
40	In vivo functional studies of tumor-specific retrogene NanogP8 in transgenic animals. Cell Cycle, 2013, 12, 2395-2408.	1.3	30
41	Dissociated Primary Human Prostate Cancer Cells Coinjected with the Immortalized Hs5 Bone Marrow Stromal Cells Generate Undifferentiated Tumors in NOD/SCID-γ Mice. PLoS ONE, 2013, 8, e56903.	1.1	12
42	Prostate Cancer Stem Cells: A Brief Review. , 2013, , 37-49.		0
43	Distinct microRNA Expression Profiles in Prostate Cancer Stem/Progenitor Cells and Tumor-Suppressive Functions of let-7. Cancer Research, 2012, 72, 3393-3404.	0.4	172
44	The PSAâ^'/lo Prostate Cancer Cell Population Harbors Self-Renewing Long-Term Tumor-Propagating Cells that Resist Castration. Cell Stem Cell, 2012, 10, 556-569.	5.2	281
45	Understanding cancer stem cell heterogeneity and plasticity. Cell Research, 2012, 22, 457-472.	5.7	473
46	Drug-Tolerant Cancer Cells Show Reduced Tumor-Initiating Capacity: Depletion of CD44+ Cells and Evidence for Epigenetic Mechanisms. PLoS ONE, 2011, 6, e24397.	1.1	47
47	The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nature Medicine, 2011, 17, 211-215.	15.2	1,276
48	Prostate cancer stem cells and their potential roles in metastasis. Journal of Surgical Oncology, 2011, 103, 558-562.	0.8	61
49	MicroRNA Regulation of Cancer Stem Cells. Cancer Research, 2011, 71, 5950-5954.	0.4	231
50	Defective Molecular Timer in the Absence of Nucleotides Leads to Inefficient Caspase Activation. PLoS ONE, 2011, 6, e16379.	1.1	11
51	An Old Player on a New Playground: Bmi-1 as a Regulator of Prostate Stem Cells. Cell Stem Cell, 2010, 7, 639-640.	5.2	7
52	Functional Evidence that the Self-Renewal Gene <i>NANOG</i> Regulates Human Tumor Development. Stem Cells, 2009, 27, 993-1005.	1.4	307
53	Detection of Apoptosis in Cell-Free Systems. Methods in Molecular Biology, 2009, 559, 65-75.	0.4	12
54	Methodologies in Assaying Prostate Cancer Stem Cells. Methods in Molecular Biology, 2009, 568, 85-138.	0.4	34

#	Article	IF	Citations
55	Prostate Cancer Stem/Progenitor Cells. , 2009, , 217-230.		O
56	Prostate Cancer Stem Cells and Their Involvement in Metastasis. , 2009, , 455-461.		0
57	Cancer Stem Cells: Potential Mediators of Therapeutic Resistance and Novel Targets of Anti-cancer Treatments., 2009,, 559-579.		O
58	Evidence that senescent human prostate epithelial cells enhance tumorigenicity: Cell fusion as a potential mechanism and inhibition by p16INK4a and hTERT. International Journal of Cancer, 2008, 122, 1483-1495.	2.3	37
59	PC3 Human Prostate Carcinoma Cell Holoclones Contain Self-renewing Tumor-Initiating Cells. Cancer Research, 2008, 68, 1820-1825.	0.4	208
60	Critical and Distinct Roles of p16 and Telomerase in Regulating the Proliferative Life Span of Normal Human Prostate Epithelial Progenitor Cells. Journal of Biological Chemistry, 2008, 283, 27957-27972.	1.6	32
61	Hierarchical Organization of Prostate Cancer Cells in Xenograft Tumors: The CD44+ $\hat{1}\pm2\hat{1}^2$ 1+ Cell Population Is Enriched in Tumor-Initiating Cells. Cancer Research, 2007, 67, 6796-6805.	0.4	334
62	CD44 as a Functional Cancer Stem Cell Marker and a Potential Therapeutic Target., 2007,, 317-334.		1
63	Cytosolic Accumulation of HSP60 during Apoptosis with or without Apparent Mitochondrial Release. Journal of Biological Chemistry, 2007, 282, 31289-31301.	1.6	207
64	Prostate cancer stem/progenitor cells: Identification, characterization, and implications. Molecular Carcinogenesis, 2007, 46, 1-14.	1.3	201
65	Carcinogenesis. , 2007, , 97-118.		2
66	Intracellular Nucleotides Act as Critical Prosurvival Factors by Binding to Cytochrome C and Inhibiting Apoptosome. Cell, 2006, 125, 1333-1346.	13.5	112
67	Induction of prosurvival molecules by apoptotic stimuli: involvement of FOXO3a and ROS. Oncogene, 2005, 24, 2020-2031.	2.6	88
68	Cell-autonomous induction of functional tumor suppressor 15-lipoxygenase 2 (15-LOX2) contributes to replicative senescence of human prostate progenitor cells. Oncogene, 2005, 24, 3583-3595.	2.6	52
69	Bax-dependent Regulation of Bak by Voltage-dependent Anion Channel 2*. Journal of Biological Chemistry, 2005, 280, 19051-19061.	1.6	83
70	Side Population Is Enriched in Tumorigenic, Stem-Like Cancer Cells, whereas ABCG2+ and ABCG2â ⁻ Cancer Cells Are Similarly Tumorigenic. Cancer Research, 2005, 65, 6207-6219.	0.4	873
71	Cell survival signaling during apoptosis: Implications in drug resistance and anti-cancer therapeutic development., 2005, 63, 115-145.		1
72	Association of Active Caspase 8 with the Mitochondrial Membrane during Apoptosis: Potential Roles in Cleaving BAP31 and Caspase 3 and Mediating Mitochondrion-Endoplasmic Reticulum Cross Talk in Etoposide-Induced Cell Death. Molecular and Cellular Biology, 2004, 24, 6592-6607.	1.1	140

#	Article	IF	Citations
73	Subcellular Localization and Tumor-suppressive Functions of 15-Lipoxygenase 2 (15-LOX2) and Its Splice Variants. Journal of Biological Chemistry, 2003, 278, 25091-25100.	1.6	61
74	Mitochondrially Localized Active Caspase-9 and Caspase-3 Result Mostly from Translocation from the Cytosol and Partly from Caspase-mediated Activation in the Organelle. Journal of Biological Chemistry, 2003, 278, 17408-17420.	1.6	67
75	Early Mitochondrial Activation and Cytochrome c Up-regulation during Apoptosis. Journal of Biological Chemistry, 2002, 277, 50842-50854.	1.6	179
76	Identification and characterization of Bimgamma, a novel proapoptotic BH3-only splice variant of Bim. Cancer Research, 2002, 62, 2976-81.	0.4	49
77	Long-Term Culture of Purified Postnatal Oligodendrocyte Precursor Cells. Journal of Cell Biology, 2000, 148, 971-984.	2.3	126
78	Prostate secretory protein (PSP94) suppresses the growth of androgen-independent prostate cancer cell line (PC3) and xenografts by inducing apoptosis., 1999, 38, 118-125.		65
79	12(S)-hydroxyeicosatetraenoic acid increases the actin microfilament content in B16a melanoma cells: A protein kinase-dependent process. , 1998, 77, 271-278.		25
80	BMD188, A novel hydroxamic acid compound, demonstrates potent anti-prostate cancer effectsin vitro andin vivo by inducing apoptosis: requirements for mitochondria, reactive oxygen species, and proteases. Pathology and Oncology Research, 1998, 4, 179-190.	0.9	20
81	Apoptosis in the Absence of Cytochrome c Accumulation in the Cytosol. Biochemical and Biophysical Research Communications, 1998, 242, 380-384.	1.0	103
82	Target to apoptosis: A hopeful weapon for prostate cancer. , 1997, 32, 284-293.		158
83	Critical Role of Arachidonate Lipoxygenases in Regulating Apoptosis. Advances in Experimental Medicine and Biology, 1997, 407, 405-411.	0.8	8
84	Tyrosine phosphorylation of a $\hat{a}^{1}/430$ kd protein precedes $\hat{l}\pm\nu\hat{l}^{2}3$ integrin-signaled endothelial cell spreading and motility on matrix proteins. Pathology and Oncology Research, 1996, 2, 21-29.	0.9	0
85	Apoptosis: A current molecular analysis. Pathology and Oncology Research, 1996, 2, 117-131.	0.9	49
86	Prostate Cancer Old Problems and New Approaches. Pathology and Oncology Research, 1996, 2, 191-211.	0.9	10
87	Dual Regulatory Role of Cyclooxygenase and Lipoxygenase and their Products in Cell Survival and Apoptosis., 1996,, 133-139.		0
88	Melanoma cell spreading on fibronectin induced by 12(S)-HETE involves both protein kinase C- and protein tyrosine kinase-dependent focal adhesion formation and tyrosine phosphorylation of focal adhesion kinase (pp125FAK). Journal of Cellular Physiology, 1995, 165, 291-306.	2.0	29
89	12-Lipoxygenases and 12(S)-HETE: role in cancer metastasis. Cancer and Metastasis Reviews, 1994, 13, 365-396.	2.7	198
90	Enhanced Endothelial Cell Retraction Mediated by 12(S)-HETE: A Proposed Mechanism for the Role of Platelets in Tumor Cell Metastasis. Experimental Cell Research, 1994, 210, 1-9.	1.2	64

#	ARTICLE	lF	CITATION
91	The Lipoxygenase Metabolite, 12(S)-HETE, Induces a Protein Kinase C-Dependent Cytoskeletal Rearrangement and Retraction of Microvascular Endothelial Cells. Experimental Cell Research, 1993, 207, 361-375.	1.2	52
92	Phenotypic properties of cultured tumor cells: Integrin $\hat{l}\pm llb\hat{l}^2$ 3 expression, tumor-cell-induced platelet aggregation, and tumor-cell adhesion to endothelium as important parameters of experimental metastasis. International Journal of Cancer, 1993, 54, 338-347.	2.3	18
93	Platelets and cancer metastasis: A causal relationship?. Cancer and Metastasis Reviews, 1992, 11, 325-351.	2.7	263
94	Adhesion molecules and tumor cell interaction with endothelium and subendothelial matrix. Cancer and Metastasis Reviews, 1992, 11, 353-375.	2.7	214
95	Fatty acid modulation of tumor cell-platelet-vessel wall interaction. Cancer and Metastasis Reviews, 1992, 11, 389-409.	2.7	51
96	Prostate cancer stem cells., 0,, 15-30.		0