
Dean G Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10522511/publications.pdf Version: 2024-02-01

DEAN C TANC

#	Article	IF	CITATIONS
1	The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nature Medicine, 2011, 17, 211-215.	15.2	1,276
2	Side Population Is Enriched in Tumorigenic, Stem-Like Cancer Cells, whereas ABCG2+ and ABCG2â^' Cancer Cells Are Similarly Tumorigenic. Cancer Research, 2005, 65, 6207-6219.	0.4	873
3	Understanding cancer stem cell heterogeneity and plasticity. Cell Research, 2012, 22, 457-472.	5.7	473
4	Hierarchical Organization of Prostate Cancer Cells in Xenograft Tumors: The CD44+α2β1+ Cell Population Is Enriched in Tumor-Initiating Cells. Cancer Research, 2007, 67, 6796-6805.	0.4	334
5	Functional Evidence that the Self-Renewal Gene <i>NANOG</i> Regulates Human Tumor Development. Stem Cells, 2009, 27, 993-1005.	1.4	307
6	The PSAâ^'/lo Prostate Cancer Cell Population Harbors Self-Renewing Long-Term Tumor-Propagating Cells that Resist Castration. Cell Stem Cell, 2012, 10, 556-569.	5.2	281
7	Platelets and cancer metastasis: A causal relationship?. Cancer and Metastasis Reviews, 1992, 11, 325-351.	2.7	263
8	MicroRNA Regulation of Cancer Stem Cells. Cancer Research, 2011, 71, 5950-5954.	0.4	231
9	Adhesion molecules and tumor cell interaction with endothelium and subendothelial matrix. Cancer and Metastasis Reviews, 1992, 11, 353-375.	2.7	214
10	Cancer stem cells and radioresistance. International Journal of Radiation Biology, 2014, 90, 615-621.	1.0	214
11	PC3 Human Prostate Carcinoma Cell Holoclones Contain Self-renewing Tumor-Initiating Cells. Cancer Research, 2008, 68, 1820-1825.	0.4	208
12	Cytosolic Accumulation of HSP60 during Apoptosis with or without Apparent Mitochondrial Release. Journal of Biological Chemistry, 2007, 282, 31289-31301.	1.6	207
13	Prostate cancer stem/progenitor cells: Identification, characterization, and implications. Molecular Carcinogenesis, 2007, 46, 1-14.	1.3	201
14	12-Lipoxygenases and 12(S)-HETE: role in cancer metastasis. Cancer and Metastasis Reviews, 1994, 13, 365-396.	2.7	198
15	Cell-of-Origin of Cancer versus Cancer Stem Cells: Assays and Interpretations. Cancer Research, 2015, 75, 4003-4011.	0.4	198
16	MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nature Communications, 2017, 8, 14270.	5.8	187
17	Early Mitochondrial Activation and Cytochrome c Up-regulation during Apoptosis. Journal of Biological Chemistry, 2002, 277, 50842-50854.	1.6	179
18	Concise Review: NANOG in Cancer Stem Cells and Tumor Development: An Update and Outstanding Questions. Stem Cells, 2015, 33, 2381-2390.	1.4	177

#	Article	IF	CITATIONS
19	Distinct microRNA Expression Profiles in Prostate Cancer Stem/Progenitor Cells and Tumor-Suppressive Functions of let-7. Cancer Research, 2012, 72, 3393-3404.	0.4	172
20	Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer. Nature Communications, 2016, 7, 10798.	5.8	166
21	Target to apoptosis: A hopeful weapon for prostate cancer. , 1997, 32, 284-293.		158
22	Association of Active Caspase 8 with the Mitochondrial Membrane during Apoptosis: Potential Roles in Cleaving BAP31 and Caspase 3 and Mediating Mitochondrion-Endoplasmic Reticulum Cross Talk in Etoposide-Induced Cell Death. Molecular and Cellular Biology, 2004, 24, 6592-6607.	1.1	140
23	miRNA-128 Suppresses Prostate Cancer by Inhibiting BMI-1 to Inhibit Tumor-Initiating Cells. Cancer Research, 2014, 74, 4183-4195.	0.4	128
24	Long-Term Culture of Purified Postnatal Oligodendrocyte Precursor Cells. Journal of Cell Biology, 2000, 148, 971-984.	2.3	126
25	Intracellular Nucleotides Act as Critical Prosurvival Factors by Binding to Cytochrome C and Inhibiting Apoptosome. Cell, 2006, 125, 1333-1346.	13.5	112
26	Apoptosis in the Absence of Cytochrome c Accumulation in the Cytosol. Biochemical and Biophysical Research Communications, 1998, 242, 380-384.	1.0	103
27	The microRNA miR-34a Inhibits Non-Small Cell Lung Cancer (NSCLC) Growth and the CD44hi Stem-Like NSCLC Cells. PLoS ONE, 2014, 9, e90022.	1.1	102
28	Cancer stem cells: Regulation programs, immunological properties and immunotherapy. Seminars in Cancer Biology, 2018, 52, 94-106.	4.3	100
29	Linking prostate cancer cell AR heterogeneity to distinct castration and enzalutamide responses. Nature Communications, 2018, 9, 3600.	5.8	96
30	Concise Review: Prostate Cancer Stem Cells: Current Understanding. Stem Cells, 2018, 36, 1457-1474.	1.4	90
31	Induction of prosurvival molecules by apoptotic stimuli: involvement of FOXO3a and ROS. Oncogene, 2005, 24, 2020-2031.	2.6	88
32	Bax-dependent Regulation of Bak by Voltage-dependent Anion Channel 2*. Journal of Biological Chemistry, 2005, 280, 19051-19061.	1.6	83
33	Intron retention is a hallmark and spliceosome represents a therapeutic vulnerability in aggressive prostate cancer. Nature Communications, 2020, 11, 2089.	5.8	83
34	Regulation of NANOG in cancer cells. Molecular Carcinogenesis, 2015, 54, 679-687.	1.3	79
35	Defining a Population of Stem-like Human Prostate Cancer Cells That Can Generate and Propagate Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2016, 22, 4505-4516.	3.2	78
36	Cytotoxicity of Human Endogenous Retrovirus K–Specific T Cells toward Autologous Ovarian Cancer Cells. Clinical Cancer Research, 2015, 21, 471-483.	3.2	70

#	Article	IF	CITATIONS
37	Cancer stem cells and cell size: A causal link?. Seminars in Cancer Biology, 2015, 35, 191-199.	4.3	69
38	Bim, a Proapoptotic Protein, Up-regulated via Transcription Factor E2F1-dependent Mechanism, Functions as a Prosurvival Molecule in Cancer. Journal of Biological Chemistry, 2013, 288, 368-381.	1.6	68
39	Mitochondrially Localized Active Caspase-9 and Caspase-3 Result Mostly from Translocation from the Cytosol and Partly from Caspase-mediated Activation in the Organelle. Journal of Biological Chemistry, 2003, 278, 17408-17420.	1.6	67
40	MicroRNA-34a: Potent Tumor Suppressor, Cancer Stem Cell Inhibitor, and Potential Anticancer Therapeutic. Frontiers in Cell and Developmental Biology, 2021, 9, 640587.	1.8	67
41	Prostate secretory protein (PSP94) suppresses the growth of androgen-independent prostate cancer cell line (PC3) and xenografts by inducing apoptosis. , 1999, 38, 118-125.		65
42	New insights into prostate cancer stem cells. Cell Cycle, 2013, 12, 579-586.	1.3	65
43	Systematic dissection of phenotypic, functional, and tumorigenic heterogeneity of human prostate cancer cells. Oncotarget, 2015, 6, 23959-23986.	0.8	65
44	Enhanced Endothelial Cell Retraction Mediated by 12(S)-HETE: A Proposed Mechanism for the Role of Platelets in Tumor Cell Metastasis. Experimental Cell Research, 1994, 210, 1-9.	1.2	64
45	Subcellular Localization and Tumor-suppressive Functions of 15-Lipoxygenase 2 (15-LOX2) and Its Splice Variants. Journal of Biological Chemistry, 2003, 278, 25091-25100.	1.6	61
46	Prostate cancer stem cells and their potential roles in metastasis. Journal of Surgical Oncology, 2011, 103, 558-562.	0.8	61
47	Cellular determinants and microenvironmental regulation of prostate cancer metastasis. Seminars in Cancer Biology, 2017, 44, 83-97.	4.3	54
48	Prostate Luminal Progenitor Cells in Development and Cancer. Trends in Cancer, 2018, 4, 769-783.	3.8	54
49	Slow-cycling (dormant) cancer cells in therapy resistance, cancer relapse and metastasis. Seminars in Cancer Biology, 2022, 78, 90-103.	4.3	53
50	The Lipoxygenase Metabolite, 12(S)-HETE, Induces a Protein Kinase C-Dependent Cytoskeletal Rearrangement and Retraction of Microvascular Endothelial Cells. Experimental Cell Research, 1993, 207, 361-375.	1.2	52
51	Cell-autonomous induction of functional tumor suppressor 15-lipoxygenase 2 (15-LOX2) contributes to replicative senescence of human prostate progenitor cells. Oncogene, 2005, 24, 3583-3595.	2.6	52
52	Fatty acid modulation of tumor cell-platelet-vessel wall interaction. Cancer and Metastasis Reviews, 1992, 11, 389-409.	2.7	51
53	Apoptosis: A current molecular analysis. Pathology and Oncology Research, 1996, 2, 117-131.	0.9	49
54	Androgen receptor (AR) heterogeneity in prostate cancer and therapy resistance. Cancer Letters, 2021, 518, 1-9.	3.2	49

#	Article	IF	CITATIONS
55	Identification and characterization of Bimgamma, a novel proapoptotic BH3-only splice variant of Bim. Cancer Research, 2002, 62, 2976-81.	0.4	49
56	Androgen receptor and prostate cancer stem cells: biological mechanisms and clinical implications. Endocrine-Related Cancer, 2015, 22, T209-T220.	1.6	48
57	miR-199a-3p targets stemness-related and mitogenic signaling pathways to suppress the expansion and tumorigenic capabilities of prostate cancer stem cells. Oncotarget, 2016, 7, 56628-56642.	0.8	48
58	Drug-Tolerant Cancer Cells Show Reduced Tumor-Initiating Capacity: Depletion of CD44+ Cells and Evidence for Epigenetic Mechanisms. PLoS ONE, 2011, 6, e24397.	1.1	47
59	NANOG reprograms prostate cancer cells to castration resistance via dynamically repressing and engaging the AR/FOXA1 signaling axis. Cell Discovery, 2016, 2, 16041.	3.1	41
60	Tumor Dormancy and Slow-Cycling Cancer Cells. Advances in Experimental Medicine and Biology, 2019, 1164, 199-206.	0.8	41
61	Evidence that senescent human prostate epithelial cells enhance tumorigenicity: Cell fusion as a potential mechanism and inhibition by p16INK4a and hTERT. International Journal of Cancer, 2008, 122, 1483-1495.	2.3	37
62	Numbâ^'/low Enriches a Castration-Resistant Prostate Cancer Cell Subpopulation Associated with Enhanced Notch and Hedgehog Signaling. Clinical Cancer Research, 2017, 23, 6744-6756.	3.2	36
63	Histone 2B-GFP Label-Retaining Prostate Luminal Cells Possess Progenitor Cell Properties and Are Intrinsically Resistant to Castration. Stem Cell Reports, 2018, 10, 228-242.	2.3	36
64	Methodologies in Assaying Prostate Cancer Stem Cells. Methods in Molecular Biology, 2009, 568, 85-138.	0.4	34
65	Critical and Distinct Roles of p16 and Telomerase in Regulating the Proliferative Life Span of Normal Human Prostate Epithelial Progenitor Cells. Journal of Biological Chemistry, 2008, 283, 27957-27972.	1.6	32
66	Understanding and targeting prostate cancer cell heterogeneity and plasticity. Seminars in Cancer Biology, 2022, 82, 68-93.	4.3	31
67	In vivo functional studies of tumor-specific retrogene NanogP8 in transgenic animals. Cell Cycle, 2013, 12, 2395-2408.	1.3	30
68	Melanoma cell spreading on fibronectin induced by 12(S)-HETE involves both protein kinase C- and protein tyrosine kinase-dependent focal adhesion formation and tyrosine phosphorylation of focal adhesion kinase (pp125FAK). Journal of Cellular Physiology, 1995, 165, 291-306.	2.0	29
69	12(S)-hydroxyeicosatetraenoic acid increases the actin microfilament content in B16a melanoma cells: A protein kinase-dependent process. , 1998, 77, 271-278.		25
70	Tumor-suppressive functions of 15-Lipoxygenase-2 and RB1CC1 in prostate cancer. Cell Cycle, 2014, 13, 1798-1810.	1.3	22
71	BMD188, A novel hydroxamic acid compound, demonstrates potent anti-prostate cancer effectsin vitro andin vivo by inducing apoptosis: requirements for mitochondria, reactive oxygen species, and proteases. Pathology and Oncology Research, 1998, 4, 179-190.	0.9	20
72	Developing a Novel Two-Dimensional Culture System to Enrich Human Prostate Luminal Progenitors that Can Function as a Cell of Origin for Prostate Cancer. Stem Cells Translational Medicine, 2017, 6, 748-760.	1.6	19

#	Article	IF	CITATIONS
73	Molecular determinants of prostate cancer metastasis. Oncotarget, 2017, 8, 88211-88231.	0.8	19
74	Phenotypic properties of cultured tumor cells: Integrin αIIbβ3 expression, tumor-cell-induced platelet aggregation, and tumor-cell adhesion to endothelium as important parameters of experimental metastasis. International Journal of Cancer, 1993, 54, 338-347.	2.3	18
75	Longitudinal tracking of subpopulation dynamics and molecular changes during LNCaP cell castration and identification of inhibitors that could target the PSAâ~'/lo castration-resistant cells. Oncotarget, 2016, 7, 14220-14240.	0.8	17
76	LRIG1 is a pleiotropic androgen receptor-regulated feedback tumor suppressor in prostate cancer. Nature Communications, 2019, 10, 5494.	5.8	13
77	Detection of Apoptosis in Cell-Free Systems. Methods in Molecular Biology, 2009, 559, 65-75.	0.4	12
78	Dissociated Primary Human Prostate Cancer Cells Coinjected with the Immortalized Hs5 Bone Marrow Stromal Cells Generate Undifferentiated Tumors in NOD/SCID-Î ³ Mice. PLoS ONE, 2013, 8, e56903.	1.1	12
79	Nanog1 in NTERA-2 and Recombinant NanogP8 from Somatic Cancer Cells Adopt Multiple Protein Conformations and Migrate at Multiple M.W Species. PLoS ONE, 2014, 9, e90615.	1.1	11
80	Defective Molecular Timer in the Absence of Nucleotides Leads to Inefficient Caspase Activation. PLoS ONE, 2011, 6, e16379.	1.1	11
81	Prostate Cancer Old Problems and New Approaches. Pathology and Oncology Research, 1996, 2, 191-211.	0.9	10
82	Critical Role of Arachidonate Lipoxygenases in Regulating Apoptosis. Advances in Experimental Medicine and Biology, 1997, 407, 405-411.	0.8	8
83	Cancer stem cells: advances in biology and clinical translation—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 142-163.	1.8	8
84	An Old Player on a New Playground: Bmi-1 as a Regulator of Prostate Stem Cells. Cell Stem Cell, 2010, 7, 639-640.	5.2	7
85	Transgenic overexpression of NanogP8 in the mouse prostate is insufficient to initiate tumorigenesis but weakly promotes tumor development in the Hi-Myc mouse model. Oncotarget, 2017, 8, 52746-52760.	0.8	4
86	Carcinogenesis. , 2007, , 97-118.		2
87	CD44 as a Functional Cancer Stem Cell Marker and a Potential Therapeutic Target. , 2007, , 317-334.		1
88	Cell survival signaling during apoptosis: Implications in drug resistance and anti-cancer therapeutic development. , 2005, 63, 115-145.		1
89	Tyrosine phosphorylation of a â^¼30 kd protein precedes αvl̂²3 integrin-signaled endothelial cell spreading and motility on matrix proteins. Pathology and Oncology Research, 1996, 2, 21-29.	0.9	0

#	Article	IF	CITATIONS
91	Deep RNA-Seq analysis reveals unexpected features of human prostate basal epithelial cells. Genomics Data, 2016, 7, 318-320.	1.3	Ο
92	Prostate Cancer Stem/Progenitor Cells. , 2009, , 217-230.		0
93	Prostate Cancer Stem Cells and Their Involvement in Metastasis. , 2009, , 455-461.		Ο
94	Cancer Stem Cells: Potential Mediators of Therapeutic Resistance and Novel Targets of Anti-cancer Treatments. , 2009, , 559-579.		0
95	Prostate Cancer Stem Cells: A Brief Review. , 2013, , 37-49.		Ο
96	Dual Regulatory Role of Cyclooxygenase and Lipoxygenase and their Products in Cell Survival and Apoptosis. , 1996, , 133-139.		0