
Fabian Fertig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10520964/publications.pdf Version: 2024-02-01

FARIAN FEDTIC

#	Article	IF	CITATIONS
1	Q CELLS > 24% Silicon Solar Cells With Mass-Production Processes. IEEE Journal of Photovoltaics, 2022, 12, 22-25.	2.5	5
2	Q.ANTUM on p-type Cz silicon: high-end performance and reliability. , 2018, , .		4
3	Impact of Material and Process Variations on the Distribution of Multicrystalline Silicon PERC Cell Efficiencies. IEEE Journal of Photovoltaics, 2017, 7, 118-128.	2.5	18
4	System performance loss due to LeTID. Energy Procedia, 2017, 124, 540-546.	1.8	55
5	Bifacial potential of single―and doubleâ€sided collecting silicon solar cells. Progress in Photovoltaics: Research and Applications, 2016, 24, 818-829.	8.1	14
6	Spatially Resolved Analysis of Light Induced Degradation of Multicrystalline PERC Solar Cells. Energy Procedia, 2016, 92, 867-872.	1.8	27
7	Fast Regeneration Processes to Avoid Light-Induced Degradation in Multicrystalline Silicon Solar Cells. IEEE Journal of Photovoltaics, 2016, 6, 1427-1431.	2.5	30
8	Economic feasibility of bifacial silicon solar cells. Progress in Photovoltaics: Research and Applications, 2016, 24, 800-817.	8.1	44
9	biPERC silicon solar cells enabling bifacial applications for industrial solar cells with passivated rear sides. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 68-71.	1.8	21
10	Light-induced Degradation of Silicon Solar Cells with Aluminiumoxide Passivated Rear Side. Energy Procedia, 2015, 77, 599-606.	1.8	56
11	Resistivity, Doping Concentrations, and Carrier Mobilities in Compensated n- and p-Type Czochralski Silicon: Comparison of Measurements and Simulations and Consistent Description of Material Parameters. IEEE Journal of Photovoltaics, 2015, 5, 1276-1284.	2.5	2
12	Light-induced degradation of PECVD aluminium oxide passivated silicon solar cells. Physica Status Solidi - Rapid Research Letters, 2015, 9, 41-46.	2.4	122
13	An empirical method for imaging the short circuit current density in silicon solar cells based on dark lock-in thermography. Solar Energy Materials and Solar Cells, 2015, 143, 406-410.	6.2	16
14	Short-circuit Current Density Imaging Methods for Silicon Solar Cells. Energy Procedia, 2015, 77, 43-56.	1.8	5
15	The BOSCO Solar Cell: Double-sided Collection and Bifacial Operation. Energy Procedia, 2014, 55, 416-424.	1.8	5
16	Short-circuit current density imaging of crystalline silicon solar cells via lock-in thermography: Robustness and simplifications. Journal of Applied Physics, 2014, 116, 184501.	2.5	5
17	The BOSCO cell concept: Bifacial operation with double-sided collection. , 2014, , .		1
18	Spatially resolved determination of the short-circuit current density of silicon solar cells via lock-in thermography. Applied Physics Letters, 2014, 104, 201111.	3.3	22

Fabian Fertig

#	Article	IF	CITATIONS
19	The BOSCO Solar Cell: Simulation and Experiment. IEEE Journal of Photovoltaics, 2014, 4, 1243-1251.	2.5	13
20	The BOSCO solar cell – a both sides collecting and contacted structure. Physica Status Solidi - Rapid Research Letters, 2014, 8, 381-384.	2.4	8
21	Illumination and Temperature Dependence of Breakdown Mechanisms in Multi-crystalline Silicon Solar Cells. Energy Procedia, 2013, 38, 32-42.	1.8	9
22	Characterization and modeling of screen-printed metal insulator semiconductor tunnel junctions for integrated bypass functionality in crystalline silicon solar cells. Journal of Applied Physics, 2013, 113, 214502.	2.5	4
23	Intrinsic effects of double side collecting silicon solar cells. Energy Procedia, 2011, 8, 160-166.	1.8	6
24	HIP-MWT: A simplified structure for metal wrap through solar cells with passivated rear surface. Energy Procedia, 2011, 8, 498-502.	1.8	6