## Jeremy M Beaulieu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10520068/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of<br>Biogeography, 2023, 50, 43-56.                                                                 | 1.4 | 17        |
| 2  | Retiring "Cradles―and "Museums―of Biodiversity. American Naturalist, 2022, 199, 194-205.                                                                                                      | 1.0 | 22        |
| 3  | A flexible method for estimating tip diversification rates across a range of speciation and extinction scenarios. Evolution; International Journal of Organic Evolution, 2022, 76, 1420-1433. | 1.1 | 26        |
| 4  | Synthesizing Existing Phylogenetic Data to Advance Phylogenetic Research in Orobanchaceae.<br>Systematic Botany, 2022, 47, 533-544.                                                           | 0.2 | 2         |
| 5  | Generalized hidden Markov models for phylogenetic comparative datasets. Methods in Ecology and Evolution, 2021, 12, 468-478.                                                                  | 2.2 | 58        |
| 6  | A Spatially Explicit Model of Stabilizing Selection for Improving Phylogenetic Inference. Molecular<br>Biology and Evolution, 2021, 38, 1641-1652.                                            | 3.5 | 1         |
| 7  | Geophytism in monocots leads to higher rates of diversification. New Phytologist, 2020, 225, 1023-1032.                                                                                       | 3.5 | 22        |
| 8  | Comparative Analyses of Phenotypic Sequences Using Phylogenetic Trees. American Naturalist, 2020,<br>195, E38-E50.                                                                            | 1.0 | 2         |
| 9  | Diatoms diversify and turn over faster in freshwater than marine environments*. Evolution;<br>International Journal of Organic Evolution, 2019, 73, 2497-2511.                                | 1.1 | 65        |
| 10 | The monocotyledonous underground: global climatic and phylogenetic patterns of geophyte diversity. American Journal of Botany, 2019, 106, 850-863.                                            | 0.8 | 44        |
| 11 | Diversity and skepticism are vital for comparative biology: aÂresponse to Donoghue and Edwards (2019).<br>American Journal of Botany, 2019, 106, 613-617.                                     | 0.8 | 15        |
| 12 | Population Genetics Based Phylogenetics Under Stabilizing Selection for an Optimal Amino Acid<br>Sequence: A Nested Modeling Approach. Molecular Biology and Evolution, 2019, 36, 834-851.    | 3.5 | 11        |
| 13 | Can we build it? Yes we can, but should we use it? AssessingÂthe quality and value of a very large phylogeny ofÂcampanulid angiosperms. American Journal of Botany, 2018, 105, 417-432.       | 0.8 | 45        |
| 14 | Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta). New Phytologist, 2018, 219, 462-473.      | 3.5 | 104       |
| 15 | Hidden state models improve state-dependent diversification approaches, including biogeographical models. Evolution; International Journal of Organic Evolution, 2018, 72, 2308-2324.         | 1.1 | 145       |
| 16 | Adaptive evolution to novel predators facilitates the evolution of damselfly species range shifts.<br>Evolution; International Journal of Organic Evolution, 2017, 71, 974-984.               | 1.1 | 9         |
| 17 | Variation in seed size is structured by dispersal syndrome and cone morphology in conifers and other nonflowering seed plants. New Phytologist, 2017, 216, 429-437.                           | 3.5 | 53        |
| 18 | Past, future, and present of stateâ€dependent models of diversification. American Journal of Botany, 2016, 103, 792-795.                                                                      | 0.8 | 39        |

JEREMY M BEAULIEU

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Detecting Hidden Diversification Shifts in Models of Trait-Dependent Speciation and Extinction.<br>Systematic Biology, 2016, 65, 583-601.                                                      | 2.7  | 447       |
| 20 | Zanne et al. reply. Nature, 2015, 521, E6-E7.                                                                                                                                                  | 13.7 | 3         |
| 21 | Extinction can be estimated from moderately sized molecular phylogenies. Evolution; International<br>Journal of Organic Evolution, 2015, 69, 1036-1043.                                        | 1.1  | 92        |
| 22 | Integration and macroevolutionary patterns in the pollination biology of conifers. Evolution;<br>International Journal of Organic Evolution, 2015, 69, 1573-1583.                              | 1.1  | 11        |
| 23 | Heterogeneous Rates of Molecular Evolution and Diversification Could Explain the Triassic Age<br>Estimate for Angiosperms. Systematic Biology, 2015, 64, 869-878.                              | 2.7  | 108       |
| 24 | Functional distinctiveness of major plant lineages. Journal of Ecology, 2014, 102, 345-356.                                                                                                    | 1.9  | 108       |
| 25 | Cone size is related to branching architecture in conifers. New Phytologist, 2014, 203, 1119-1127.                                                                                             | 3.5  | 21        |
| 26 | Three keys to the radiation of angiosperms into freezing environments. Nature, 2014, 506, 89-92.                                                                                               | 13.7 | 1,284     |
| 27 | Modelling Stabilizing Selection: The Attraction of Ornstein–Uhlenbeck Models. , 2014, , 381-393.                                                                                               |      | 16        |
| 28 | Hidden Markov Models for Studying the Evolution of Binary Morphological Characters. , 2014, ,<br>395-408.                                                                                      |      | 17        |
| 29 | FRUIT EVOLUTION AND DIVERSIFICATION IN CAMPANULID ANGIOSPERMS. Evolution; International Journal of Organic Evolution, 2013, 67, 3132-3144.                                                     | 1.1  | 85        |
| 30 | A Southern Hemisphere origin for campanulid angiosperms, with traces of the break-up of Gondwana.<br>BMC Evolutionary Biology, 2013, 13, 80.                                                   | 3.2  | 122       |
| 31 | Explaining the distribution of breeding and dispersal syndromes in conifers. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131812.                                     | 1.2  | 29        |
| 32 | Identifying Hidden Rate Changes in the Evolution of a Binary Morphological Character: The Evolution of Plant Habit in Campanulid Angiosperms. Systematic Biology, 2013, 62, 725-737.           | 2.7  | 306       |
| 33 | Synthesizing phylogenetic knowledge for ecological research. Ecology, 2012, 93, S4-S13.                                                                                                        | 1.5  | 52        |
| 34 | Megacycles of atmospheric carbon dioxide concentration correlate with fossil plant genome size.<br>Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 556-564. | 1.8  | 39        |
| 35 | Hemisphere-scale differences in conifer evolutionary dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16217-16221.                        | 3.3  | 280       |
| 36 | MODELING STABILIZING SELECTION: EXPANDING THE ORNSTEIN-UHLENBECK MODEL OF ADAPTIVE EVOLUTION. Evolution; International Journal of Organic Evolution, 2012, 66, 2369-2383.                      | 1.1  | 537       |

JEREMY M BEAULIEU

| #  | Article                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Understanding angiosperm diversification using small and large phylogenetic trees. American Journal of Botany, 2011, 98, 404-414.                                | 0.8 | 161       |
| 38 | Integrating Fossil Preservation Biases in the Selection of Calibrations for Molecular Divergence Time<br>Estimation. Systematic Biology, 2011, 60, 519-527.      | 2.7 | 62        |
| 39 | The right stuff: evidence for an â€~optimal' genome size in a wild grass population. New Phytologist,<br>2010, 187, 883-885.                                     | 3.5 | 6         |
| 40 | On the Relationship between Pollen Size and Genome Size. Journal of Botany, 2010, 2010, 1-7.                                                                     | 1.2 | 38        |
| 41 | Genome Size Dynamics and Evolution in Monocots. Journal of Botany, 2010, 2010, 1-18.                                                                             | 1.2 | 66        |
| 42 | On the Tempo of Genome Size Evolution in Angiosperms. Journal of Botany, 2010, 2010, 1-8.                                                                        | 1.2 | 24        |
| 43 | An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proceedings of the United States of America, 2010, 107, 5897-5902.       | 3.3 | 352       |
| 44 | Life history influences rates of climatic niche evolution in flowering plants. Proceedings of the Royal<br>Society B: Biological Sciences, 2009, 276, 4345-4352. | 1.2 | 129       |
| 45 | Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches. BMC Evolutionary Biology, 2009, 9, 37.                  | 3.2 | 231       |
| 46 | CORRELATED EVOLUTION OF GENOME SIZE AND CELL VOLUME IN DIATOMS<br>(BACILLARIOPHYCEAE) <sup>1</sup> . Journal of Phycology, 2008, 44, 124-131.                    | 1.0 | 60        |
| 47 | Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist, 2008, 179, 975-986.                                         | 3.5 | 436       |
| 48 | The Dynamic Ups and Downs of Genome Size Evolution in Brassicaceae. Molecular Biology and Evolution, 2008, 26, 85-98.                                            | 3.5 | 158       |
| 49 | Genome Size Scaling through Phenotype Space. Annals of Botany, 2008, 101, 759-766.                                                                               | 1.4 | 138       |
| 50 | Genome Size Evolution in Relation to Leaf Strategy and Metabolic Rates Revisited. Annals of Botany, 2007, 99, 495-505.                                           | 1.4 | 65        |
| 51 | Correlated evolution of genome size and seed mass. New Phytologist, 2007, 173, 422-437.                                                                          | 3.5 | 189       |