Bongjun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1052003/publications.pdf

Version: 2024-02-01

		933447	839539	
19	383	10	18	
papers	citations	h-index	g-index	
10	10	10	706	
19	19	19	736	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Pathogenic roles of CXCL10 signaling through CXCR3 and TLR4 in macrophages and T cells: relevance for arthritis. Arthritis Research and Therapy, 2017, 19, 163.	3.5	104
2	A CTGFâ€RUNX2â€RANKL Axis in Breast and Prostate Cancer Cells Promotes Tumor Progression in Bone. Journal of Bone and Mineral Research, 2020, 35, 155-166.	2.8	56
3	NF-ÎB signaling regulates cell-autonomous regulation of CXCL10 in breast cancer 4T1 cells. Experimental and Molecular Medicine, 2017, 49, e295-e295.	7.7	43
4	Trolox inhibits osteolytic bone metastasis of breast cancer through both PGE2-dependent and independent mechanisms. Biochemical Pharmacology, 2014, 91, 51-60.	4.4	25
5	Myristoleic acid inhibits osteoclast formation and bone resorption by suppressing the RANKL activation of Src and Pyk2. European Journal of Pharmacology, 2015, 768, 189-198.	3.5	23
6	Notch2 signaling promotes osteoclast resorption via activation of PYK2. Cellular Signalling, 2016, 28, 357-365.	3.6	19
7	Salt-inducible kinase 1 regulates bone anabolism via the CRTC1–CREB–Id1 axis. Cell Death and Disease, 2019, 10, 826.	6.3	17
8	S100A4 released from highly bone-metastatic breast cancer cells plays a critical role in osteolysis. Bone Research, 2019, 7, 30.	11.4	16
9	A new murine esophageal organoid culture method and organoid-based model of esophageal squamous cell neoplasia. IScience, 2021, 24, 103440.	4.1	15
10	JN-2, a C-X-C motif chemokine receptor 3 antagonist, ameliorates arthritis progression in an animal model. European Journal of Pharmacology, 2018, 823, 1-10.	3.5	14
11	Mitofusin 2, a mitochondria-ER tethering protein, facilitates osteoclastogenesis by regulating the calcium-calcineurin-NFATc1 axis. Biochemical and Biophysical Research Communications, 2019, 516, 202-208.	2.1	11
12	The dynactin subunit DCTN1 controls osteoclastogenesis via the Cdc42/PAK2 pathway. Experimental and Molecular Medicine, 2020, 52, 514-528.	7.7	9
13	The role of S100A4 for bone metastasis in prostate cancer cells. BMC Cancer, 2021, 21, 137.	2.6	9
14	Haptoglobin Acts as a TLR4 Ligand to Suppress Osteoclastogenesis via the TLR4–IFN-β Axis. Journal of Immunology, 2019, 202, 3359-3369.	0.8	8
15	α-Tocopheryl Succinate Inhibits Osteolytic Bone Metastasis of Breast Cancer by Suppressing Migration of Cancer Cells and Receptor Activator of Nuclear Factor-ÎB Ligand Expression of Osteoblasts. Journal of Bone Metabolism, 2018, 25, 23.	1.3	5
16	Trapidil induces osteogenesis by upregulating the signaling of bone morphogenetic proteins. Cellular Signalling, 2018, 49, 68-78.	3.6	4
17	ST5 Positively Regulates Osteoclastogenesis via Src/Syk/calcium Signaling Pathways. Molecules and Cells, 2019, 42, 810-819.	2.6	3
18	Supporting data for the effect of gamma-secretase inhibitors in osteoclast differentiation and spreading. Data in Brief, 2016, 7, 682-685.	1.0	2

#	Article	IF	CITATIONS
19	Data on the expression of CXCR3 ligands and pro-inflammatory cytokines in macrophages and CD4+ T cells after stimuli of CXCR3 ligands. Data in Brief, 2018, 18, 518-522.	1.0	O