
Feng Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1051945/publications.pdf Version: 2024-02-01

FENC OIN

#	Article	IF	CITATIONS
1	Functional Analysis of an Arabidopsis Transcription Factor, DREB2A, Involved in Drought-Responsive Gene Expression. Plant Cell, 2006, 18, 1292-1309.	6.6	968
2	Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18822-18827.	7.1	694
3	Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences, 2020, 63, 635-674.	4.9	689
4	Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20623-20628.	7.1	592
5	<i>Arabidopsis</i> DREB2A-Interacting Proteins Function as RING E3 Ligases and Negatively Regulate Plant Drought Stress–Responsive Gene Expression. Plant Cell, 2008, 20, 1693-1707.	6.6	477
6	Achievements and Challenges in Understanding Plant Abiotic Stress Responses and Tolerance. Plant and Cell Physiology, 2011, 52, 1569-1582.	3.1	451
7	Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant Journal, 2007, 50, 54-69.	5.7	447
8	Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nature Genetics, 2016, 48, 1233-1241.	21.4	438
9	A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nature Communications, 2015, 6, 8326.	12.8	392
10	Cloning and Functional Analysis of a Novel DREB1/CBF Transcription Factor Involved in Cold-Responsive Gene Expression in Zea mays L Plant and Cell Physiology, 2004, 45, 1042-1052.	3.1	336
11	Genome-Wide Analysis of ZmDREB Genes and Their Association with Natural Variation in Drought Tolerance at Seedling Stage of Zea mays L. PLoS Genetics, 2013, 9, e1003790.	3.5	280
12	Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant Journal, 2006, 49, 46-63.	5.7	256
13	Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochemical and Biophysical Research Communications, 2008, 368, 515-521.	2.1	209
14	Arabidopsis Cys2/His2 Zinc-Finger Proteins AZF1 and AZF2 Negatively Regulate Abscisic Acid-Repressive and Auxin-Inducible Genes under Abiotic Stress Conditions A. Plant Physiology, 2011, 157, 742-756.	4.8	165
15	<i>Arabidopsis</i> DPB3-1, a DREB2A Interactor, Specifically Enhances Heat Stress-Induced Gene Expression by Forming a Heat Stress-Specific Transcriptional Complex with NF-Y Subunits. Plant Cell, 2014, 26, 4954-4973.	6.6	143
16	Arabidopsis RZFP34/CHYR1, a Ubiquitin E3 Ligase, Regulates Stomatal Movement and Drought Tolerance via SnRK2.6-Mediated Phosphorylation. Plant Cell, 2015, 27, 3228-3244.	6.6	129
17	Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science, 2022, 375, eabg7985.	12.6	110
18	Deletion of an Endoplasmic Reticulum Stress Response Element in a ZmPP2C-A Gene Facilitates Drought Tolerance of Maize Seedlings. Molecular Plant, 2017, 10, 456-469.	8.3	107

Feng Qin

#	Article	IF	CITATIONS
19	<i>SPINDLY</i> , a Negative Regulator of Gibberellic Acid Signaling, Is Involved in the Plant Abiotic Stress Response Â. Plant Physiology, 2011, 157, 1900-1913.	4.8	93
20	Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane. Plant Science, 2014, 221-222, 59-68.	3.6	91
21	Genetic variation in <i>ZmTlP1</i> contributes to root hair elongation and drought tolerance in maize. Plant Biotechnology Journal, 2020, 18, 1271-1283.	8.3	85
22	BPM-CUL3 E3 ligase modulates thermotolerance by facilitating negative regulatory domain-mediated degradation of DREB2A in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8528-E8536.	7.1	82
23	Mapping regulatory variants controlling gene expression in drought response and tolerance in maize. Genome Biology, 2020, 21, 163.	8.8	76
24	Genome-Wide Association Study Reveals Natural Variations Contributing to Drought Resistance in Crops. Frontiers in Plant Science, 2017, 8, 1110.	3.6	72
25	Heat-induced inhibition of phosphorylation of the stress-protective transcription factor DREB2A promotes thermotolerance of Arabidopsis thaliana. Journal of Biological Chemistry, 2019, 294, 902-917.	3.4	62
26	Contribution of Genomics to Gene Discovery in Plant Abiotic Stress Responses. Molecular Plant, 2012, 5, 1176-1178.	8.3	59
27	A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize. Nature Communications, 2022, 13, 2222.	12.8	55
28	Stabilization of Arabidopsis DREB2A Is Required but Not Sufficient for the Induction of Target Genes under Conditions of Stress. PLoS ONE, 2013, 8, e80457.	2.5	52
29	Genetic dissection of maize drought tolerance for trait improvement. Molecular Breeding, 2021, 41, 1.	2.1	49
30	Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biology, 2021, 22, 185.	8.8	47
31	Metabolomicsâ€driven gene mining and genetic improvement of tolerance to saltâ€induced osmotic stress in maize. New Phytologist, 2021, 230, 2355-2370.	7.3	46
32	Genomic basis underlying the metabolome-mediated drought adaptation of maize. Genome Biology, 2021, 22, 260.	8.8	44
33	The classical <scp>SOS</scp> pathway confers natural variation of salt tolerance in maize. New Phytologist, 2022, 236, 479-494.	7.3	39
34	Characterization of Proteome Variation During Modern Maize Breeding*. Molecular and Cellular Proteomics, 2019, 18, 263-276.	3.8	36
35	MAPKâ€like protein 1 positively regulates maize seedling drought sensitivity by suppressing ABA biosynthesis. Plant Journal, 2020, 102, 747-760.	5.7	33
36	Manipulating <i>ZmEXPA4</i> expression ameliorates the drought-induced prolonged anthesis and silking interval in maize. Plant Cell, 2021, 33, 2058-2071.	6.6	33

Feng Qin

#	Article	IF	CITATIONS
37	Measuring specific interaction of transcription factor ZmDREB1A with its DNA responsive element at the molecular level. Nucleic Acids Research, 2004, 32, e101-e101.	14.5	25
38	Late Pliocene vegetation and climate of Zhangcun region, Shanxi, North China. Global Change Biology, 2011, 17, 1850-1870.	9.5	24
39	IntAssoPlot: An R Package for Integrated Visualization of Genome-Wide Association Study Results With Gene Structure and Linkage Disequilibrium Matrix. Frontiers in Genetics, 2020, 11, 260.	2.3	22
40	COP1 positively regulates ABA signaling during Arabidopsis seedling growth in darkness by mediating ABA-induced ABI5 accumulation. Plant Cell, 2022, 34, 2286-2308.	6.6	17
41	AFLP and RFLP linkage map in Coix. Genetic Resources and Crop Evolution, 2005, 52, 209-214.	1.6	15
42	Quantitative Profiling of Arabidopsis Polar Glycerolipids under Two Types of Heat Stress. Plants, 2020, 9, 693.	3.5	11
43	Heat shock protein 101 (HSP101) promotes flowering under nonstress conditions. Plant Physiology, 2021, 186, 407-419.	4.8	11
44	The transcription factor ZmMYB69 represses lignin biosynthesis by activating <i>ZmMYB31/42</i> expression in maize. Plant Physiology, 2022, 189, 1916-1919.	4.8	11
45	Utility of Surface Pollen Assemblages to Delimit Eastern Eurasian Steppe Types. PLoS ONE, 2015, 10, e0119412.	2.5	8
46	ABA Regulation of Plant Responses to Drought and Salt Stresses. , 2014, , 315-336.		7
47	Transcription Factors Involved in Environmental Stress Responses in Plants. , 2012, , 279-295.		2
48	Genome-Wide Association Analyses to Identify SNPs Related to. Methods in Molecular Biology, 2022, 2462, 201-219.	0.9	0