List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1051924/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	XPS study of supported gold catalysts: the role of Au0 and Au+δ species as active sites. Surface and Interface Analysis, 2006, 38, 215-218.	0.8	435
2	Co3O4/CeO2 composite oxides for methane emissions abatement: Relationship between Co3O4–CeO2 interaction and catalytic activity. Applied Catalysis B: Environmental, 2006, 66, 217-227.	10.8	419
3	Co3O4 nanocrystals and Co3O4–MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: a review. Catalysis Science and Technology, 2013, 3, 3085.	2.1	318
4	Relationship between Structure and CO Oxidation Activity of Ceria-Supported Gold Catalysts. Journal of Physical Chemistry B, 2005, 109, 2821-2827.	1.2	272
5	Catalytic reduction of nitrates and nitrites in water solution on pumice-supported Pd–Cu catalysts. Applied Catalysis B: Environmental, 2000, 24, 265-273.	10.8	171
6	X-ray photoelectron spectroscopy (XPS) for catalysts characterization. Catalysis Today, 2003, 77, 359-370.	2.2	169
7	X-ray photoelectron spectroscopy investigation of pumice-supported nickel catalysts. Surface and Interface Analysis, 1995, 23, 239-247.	0.8	162
8	Bi- and trimetallic Ni catalysts over Al2O3 and Al2O3-MO (M = Ce or Mg) oxides for methane dry reforming: Au and Pt additive effects. Applied Catalysis B: Environmental, 2014, 156-157, 350-361.	10.8	141
9	Ni/CeO2 catalysts for methane partial oxidation: Synthesis driven structural and catalytic effects. Applied Catalysis B: Environmental, 2016, 189, 233-241.	10.8	141
10	Supported Au catalysts for low-temperature abatement of propene and toluene, as model VOCs: Support effect. Applied Catalysis B: Environmental, 2011, 101, 629-637.	10.8	139
11	Hydrogenation of aromatics over Au-Pd/SiO2-Al2O3 catalysts; support acidity effect. Applied Catalysis A: General, 2004, 264, 43-51.	2.2	135
12	Gold catalysts supported on CeO2 and CeO2–Al2O3 for NOx reduction by CO. Applied Catalysis B: Environmental, 2006, 65, 101-109.	10.8	112
13	Effect of Gold on the HDS Activity of Supported Palladium Catalysts. Journal of Catalysis, 2002, 212, 56-62.	3.1	111
14	AuPd alloy formation in Au-Pd/Al2O3 catalysts and its role on aromatics hydrogenation. Applied Surface Science, 2005, 242, 380-391.	3.1	108
15	Pumice-Supported Cu–Pd Catalysts: Influence of Copper on the Activity and Selectivity of Palladium in the Hydrogenation of Phenylacetylene and But-1-ene. Journal of Catalysis, 1999, 182, 456-462.	3.1	103
16	Influence of the SMSI effect on the catalytic activity of a Pt(1%)/Ce0.6Zr0.4O2 catalyst: SAXS, XRD, XPS and TPR investigations. Applied Catalysis B: Environmental, 2004, 48, 133-149.	10.8	93
17	Surface characterisation of metal ions loaded TiO2 photocatalysts: structure–activity relationship. Applied Catalysis B: Environmental, 2004, 48, 223-233.	10.8	92
18	Liquid phase selective oxidation of benzyl alcohol over Pd–Ag catalysts supported on pumice. Catalysis Today, 2001, 66, 271-276.	2.2	86

#	Article	IF	CITATIONS
19	Characterization of Pumice-Supported Ag–Pd and Cu–Pd Bimetallic Catalysts by X-Ray Photoelectron Spectroscopy and X-Ray Diffraction. Journal of Catalysis, 1999, 182, 449-455.	3.1	84
20	Screening of different solid acid catalysts for glycerol acetylation. Journal of Molecular Catalysis A, 2013, 367, 69-76.	4.8	84
21	Metal-support and preparation influence on the structural and electronic properties of gold catalysts. Applied Catalysis A: General, 2006, 302, 309-316.	2.2	83
22	Synthesis of CeO2, ZrO2, Ce0.5Zr0.5O2, and TiO2 nanoparticles by a novel oil-in-water microemulsion reaction method and their use as catalyst support for CO oxidation. Catalysis Today, 2010, 158, 35-43.	2.2	82
23	Preparation of N-doped TiO2: characterization and photocatalytic performance under UV and visible light. Physical Chemistry Chemical Physics, 2009, 11, 4084.	1.3	79
24	Structural characterisation of silica supported CoMo catalysts by UV Raman spectroscopy, XPS and X-ray diffraction techniques. Applied Catalysis A: General, 2002, 235, 171-180.	2.2	73
25	NO reduction by CO in the presence of water over gold supported catalysts on CeO2-Al2O3 mixed support, prepared by mechanochemical activation. Applied Catalysis B: Environmental, 2007, 76, 107-114.	10.8	73
26	Effect of Alkali Ions on the Amorphous to Crystalline Phase Transition of Silica. Journal of Solid State Chemistry, 2001, 161, 373-378.	1.4	72
27	Low pressure oxidation of Ni3Al alloys at elevated temperatures as studied by x-ray photoelectron spectroscopy and Auger spectroscopy. Surface Science, 1988, 194, 136-148.	0.8	71
28	Support effect on the catalytic performance of Au/Co3O4–CeO2 catalysts for CO and CH4 oxidation. Catalysis Today, 2008, 139, 174-179.	2.2	69
29	Oxidation of CH4 over Pd supported on TiO2-doped SiO2: Effect of Ti(IV) loading and influence of SO2. Applied Catalysis B: Environmental, 2009, 88, 430-437.	10.8	68
30	Particle size and metal-support interaction effects in pumice supported palladium catalysts. Applied Catalysis A: General, 1995, 125, 113-128.	2.2	67
31	Effect of the Al/Si atomic ratio on surface and structural properties of sol–gel prepared aluminosilicates. Journal of Solid State Chemistry, 2003, 174, 482-488.	1.4	63
32	A novel microwave assisted process for the synthesis of nanostructured ruthenium catalysts active in the hydrogenation of phenol to cyclohexanoneâ~†. Applied Catalysis A: General, 2008, 350, 46-52.	2.2	63
33	Co ₃ O ₄ particles grown over nanocrystalline CeO ₂ : influence of precipitation agents and calcination temperature on the catalytic activity for methane oxidation. Catalysis Science and Technology, 2015, 5, 1888-1901.	2.1	63
34	An easy microwave-assisted process for the synthesis of nanostructured palladium catalysts and their use in the selective hydrogenation of cinnamaldehyde. Applied Catalysis A: General, 2010, 386, 124-131.	2.2	62
35	Supported gold catalysts for CO oxidation and preferential oxidation of CO in H2 stream: Support effect. Catalysis Today, 2010, 158, 56-62.	2.2	59
36	Structure and the Metal Support Interaction of the Au/Mn Oxide Catalysts. Chemistry of Materials, 2010, 22, 3952-3960.	3.2	58

#	Article	IF	CITATIONS
37	Effect of Ti(IV) loading on CH4 oxidation activity and SO2 tolerance of Pd catalysts supported on silica SBA-15 and HMS. Applied Catalysis B: Environmental, 2011, 106, 529-539.	10.8	55
38	A comparative study of differently prepared rare earths-modified ceria-supported gold catalysts for preferential oxidation of CO. International Journal of Hydrogen Energy, 2009, 34, 6505-6515.	3.8	54
39	Synthesis and support composition effects on CH4 partial oxidation over Ni–CeLa oxides. Applied Catalysis B: Environmental, 2015, 164, 135-143.	10.8	54
40	Support effect on the structure and CO oxidation activity of Cu-Cr mixed oxides over Al2O3 and SiO2. Materials Chemistry and Physics, 2009, 114, 604-611.	2.0	53
41	Effect of metal loading on activity, selectivity and deactivation behavior of Pd/silica–alumina catalysts in the hydroconversion of n-hexadecane. Catalysis Today, 2014, 223, 87-96.	2.2	52
42	Hydroconversion of n-hexadecane on Pt/silica-alumina catalysts: Effect of metal loading and support acidity on bifunctional and hydrogenolytic activity. Applied Catalysis A: General, 2014, 469, 328-339.	2.2	50
43	Catalytic CO oxidation over pumice supported Pd–Ag catalysts. Applied Catalysis A: General, 2001, 211, 167-174.	2.2	49
44	Influence of the preparation method on the thiophene HDS activity of silica supported CoMo catalysts. Applied Catalysis A: General, 2002, 229, 261-271.	2.2	49
45	Vanadium based catalysts prepared by grafting: preparation, properties and performances in the ODH of butane. Applied Catalysis A: General, 2004, 270, 177-192.	2.2	48
46	XPS study of pumice-supported palladium and platinum catalysts. Surface and Interface Analysis, 1992, 19, 543-547.	0.8	47
47	Complete benzene oxidation over mono and bimetallic Au–Pd catalysts supported on Fe-modified ceria. Chemical Engineering Journal, 2015, 260, 133-141.	6.6	47
48	Gold catalysts supported on Y-modified ceria for CO-free hydrogen production via PROX. Applied Catalysis B: Environmental, 2016, 188, 154-168.	10.8	47
49	Carbon supported bimetallic Ru-Co catalysts for H ₂ production through NaBH ₄ and NH ₃ BH ₃ hydrolysis. International Journal of Energy Research, 2018, 42, 1183-1195.	2.2	47
50	Partial oxidation of methane to synthesis gas over Pt nanoparticles supported on nanocrystalline CeO ₂ catalyst. Catalysis Science and Technology, 2016, 6, 4601-4615.	2.1	46
51	Sol-derived AuNi/MgAl2O4 catalysts: Formation, structure and activity in dry reforming of methane. Applied Catalysis A: General, 2013, 468, 250-259.	2.2	45
52	CoMo catalysts supported on aluminosilicates: synergy between support and sodium effects. Applied Catalysis A: General, 2004, 260, 237-247.	2.2	44
53	Structure of the Metal–Support Interface and Oxidation State of Gold Nanoparticles Supported on Ceria. Journal of Physical Chemistry C, 2012, 116, 2960-2966.	1.5	44
54	Au/CeO2-SBA-15 catalysts for CO oxidation: Effect of ceria loading on physic-chemical properties and catalytic performances. Catalysis Today, 2012, 187, 10-19.	2.2	43

#	Article	IF	CITATIONS
55	NO reduction by CO over gold catalysts supported on Fe-loaded ceria. Applied Catalysis B: Environmental, 2015, 174-175, 176-184.	10.8	43
56	In situ FT-IR investigation of the reduction of NO with CO over Au/CeO2-Al2O3 catalyst in the presence and absence of H2. Applied Catalysis B: Environmental, 2009, 88, 113-126.	10.8	42
57	Factors influencing selectivity in naphthalene hydrogenation over Au- and Pt–Au-supported catalysts. Applied Catalysis A: General, 2005, 283, 165-175.	2.2	40
58	Post-synthesis alumination of MCM-41: Effect of the acidity on the HDS activity of supported Pd catalysts. Applied Catalysis A: General, 2010, 383, 211-216.	2.2	40
59	The structure of pumice: An XPS and27Al MAS NMR study. Surface and Interface Analysis, 1992, 18, 532-538.	0.8	39
60	NO reduction by CO over gold based on ceria, doped by rare earth metals. Catalysis Today, 2008, 139, 168-173.	2.2	39
61	Preferential oxidation of CO in H2 rich stream (PROX) over gold catalysts supported on doped ceria: Effect of preparation method and nature of dopant. Catalysis Today, 2010, 158, 44-55.	2.2	39
62	Nanostructured copper-zirconia composites as catalysts for methanol decomposition. Applied Catalysis B: Environmental, 2015, 165, 599-610.	10.8	38
63	Effect of Au on Pd supported over HMS and Ti doped HMS as catalysts for the hydrogenation of levulinic acid to Î ³ -valerolactone. Catalysis Today, 2015, 257, 291-296.	2.2	38
64	Esterification of acetic acid with butanol over sulfonic acid-functionalized hybrid silicas. Catalysis Today, 2010, 158, 109-113.	2.2	35
65	Co/SiO2 catalysts for Fischer–Tropsch synthesis; effect of Co loading and support modification by TiO2. Catalysis Today, 2012, 197, 18-23.	2.2	35
66	Pumice-Supported Pd-Pt Bimetallic Catalysts: Synthesis, Structural Characterization, and Liquid-Phase Hydrogenation of 1,3-Cyclooctadiene. Journal of Catalysis, 1995, 151, 125-134.	3.1	34
67	Strong impact of indium promoter on Ni/Al2O3 and Ni/CeO2-Al2O3 catalysts used in dry reforming of methane. Applied Catalysis A: General, 2021, 621, 118174.	2.2	34
68	Preferential oxidation of CO in H2 rich stream (PROX) over gold catalysts supported on doped ceria: Effect of water and CO2. Catalysis Today, 2011, 175, 411-419.	2.2	33
69	Photoactivity under visible light of metal loaded TiO 2 catalysts prepared by low frequency ultrasound treatment. Catalysis Today, 2017, 284, 92-99.	2.2	33
70	Oxidation of Ni3Al at low and high oxygen pressures. Surface and Interface Analysis, 1988, 11, 287-290.	0.8	31
71	Chromia on silica and zirconia oxides as recyclable oxidizing system: structural and surface characterization of the active chromium species for oxidation reaction. Catalysis Today, 2004, 91-92, 231-236.	2.2	31
72	Synthesis and physico-chemical characterization of gold nanoparticles softly coated by AOT. Materials Chemistry and Physics, 2006, 96, 66-72.	2.0	30

#	Article	IF	CITATIONS
73	Supported Au catalysts for propene total oxidation: Study of support morphology and gold particle size effects. Catalysis Today, 2011, 176, 7-13.	2.2	30
74	Effect of Ti and Al addition via direct synthesis to SBA-15 as support for cobalt based Fischer-Tropsch catalysts. Applied Catalysis A: General, 2012, 443-444, 76-86.	2.2	30
75	High throughput experiment approach to the oxidation of propene-to-propene oxide with transition-metal oxides as O-donors. Catalysis Today, 2008, 137, 44-51.	2.2	29
76	Combined sulfating and non-sulfating support to prevent water and sulfur poisoning of Pd catalysts for methane combustion. Chemical Communications, 2010, 46, 6317.	2.2	29
77	Combined effect of noble metals (Pd, Au) and support properties on HDS activity of Co/SiO2 catalysts. Applied Catalysis A: General, 2009, 353, 296-304.	2.2	28
78	Highly stable defective TiO2-x with tuned exposed facets induced by fluorine: Impact of surface and bulk properties on selective UV/visible alcohol photo-oxidation. Applied Surface Science, 2020, 510, 145419.	3.1	28
79	Combined CO/CH4 oxidation tests over Pd/Co3O4 monolithic catalyst: Effects of high reaction temperature and SO2 exposure on the deactivation process. Applied Catalysis B: Environmental, 2007, 75, 182-188.	10.8	27
80	Nature of cobalt active species in hydrodesulfurization catalysts: Combined support and preparation method effects. Journal of Molecular Catalysis A, 2007, 271, 238-245.	4.8	27
81	Alumina supported Au/Y-doped ceria catalysts for pure hydrogen production via PROX. International Journal of Hydrogen Energy, 2019, 44, 233-245.	3.8	27
82	Partial oxidation of methane over SiO2 supported Ni and NiCe catalysts. Journal of Energy Chemistry, 2020, 47, 1-9.	7.1	27
83	Characterization of Chromium Ion-Doped Titania by FTIR and XPS. Journal of Catalysis, 1994, 147, 115-122.	3.1	26
84	Synthesis of cyclic carbonates from epoxides: Use of reticular oxygen of Al2O3 or Al2O3-supported CeOx for the selective epoxidation of propene. Catalysis Today, 2006, 115, 117-123.	2.2	25
85	Transesterification of short chain esters using sulfonic acid-functionalized hybrid silicas: Effect of silica morphology. Catalysis Today, 2014, 223, 115-121.	2.2	25
86	Influence of fluorine on the synthesis of anatase TiO ₂ for photocatalytic partial oxidation: are exposed facets the main actors?. Catalysis Science and Technology, 2018, 8, 1606-1620.	2.1	25
87	Temperature and pressure effects for oxygen adsorption and oxidation of Ni3Al alloyed with chromium and zirconium. Surface Science, 1990, 225, 195-205.	0.8	24
88	Effect of sodium on the electronic properties of Pd/silica-alumina catalysts. Applied Catalysis A: General, 1996, 147, 81-94.	2.2	24
89	Evidence for Diffusion-Controlled Hydrocarbon Selectivities in the Fischer–Tropsch Synthesis Over Cobalt Supported on Ordered Mesoporous Silica. Topics in Catalysis, 2011, 54, 1175-1184.	1.3	24
90	Nano-gold catalysts on Fe-modified ceria for pure hydrogen production via WGS and PROX: Effect of preparation method and Fe-doping on the structural and catalytic properties. Applied Catalysis A: General, 2013, 467, 76-90.	2.2	24

#	Article	IF	CITATIONS
91	IR and XPS Study of NO and CO Interaction with Palladium Catalysts Supported on Aluminosilicates. Langmuir, 1999, 15, 1176-1181.	1.6	23
92	Influence of Sodium on the Structure and HDS Activity of Co–Mo Catalysts Supported ON Silica and Aluminosilicate. Journal of Catalysis, 2000, 194, 393-400.	3.1	22
93	Utilization of greenhouse gas carbon dioxide for cleaner Fischer-Tropsch diesel production. Journal of Cleaner Production, 2019, 228, 1013-1024.	4.6	22
94	The relationship between mass transport and oxide chemistry in oxidation of Ni ₃ Al alloys. Journal of Materials Research, 1992, 7, 1341-1349.	1.2	21
95	Structural Changes of Titanium Oxide Induced by Chromium Addition as Determined by an X-Ray Diffraction Study. Journal of Solid State Chemistry, 1995, 114, 364-368.	1.4	20
96	Model Pumices Supported Metal Catalysts. Journal of Catalysis, 1997, 171, 177-183.	3.1	20
97	Structural and surface properties of heterogeneous catalysts: Nature of the oxide carrier and supported particle size effects. Catalysis Today, 2017, 285, 114-124.	2.2	20
98	The structure of pumice by neutron diffraction. Journal of Applied Crystallography, 1994, 27, 271-277.	1.9	19
99	Innovative Process for the Synthesis of Nanostructured Ruthenium Catalysts and their Catalytic Performance. Topics in Catalysis, 2009, 52, 1065-1069.	1.3	19
100	CO and VOCs Catalytic Oxidation Over Alumina Supported Cu–Mn Catalysts: Effect of Au or Ag Deposition. Topics in Catalysis, 2017, 60, 110-122.	1.3	19
101	Chemical effect on the XPS spectra of the valence band and on O KLL and Pd MNN Auger spectra in pumice-supported catalysts. Surface and Interface Analysis, 1992, 18, 619-622.	0.8	18
102	Pd and PdAu catalysts supported over 3-MPTES grafted HMS used in the HDS of thiophene. Applied Catalysis B: Environmental, 2012, 119-120, 248-255.	10.8	18
103	CO ₂ Reforming of CH ₄ over SiO ₂ -Supported Ni Catalyst: Effect of Sn as Support and Metal Promoter. Industrial & Engineering Chemistry Research, 2021, 60, 18684-18694.	1.8	18
104	Pd/Co3O4 catalyst for CH4 emissions abatement: study of SO2 poisoning effect. Topics in Catalysis, 2007, 42-43, 425-428.	1.3	17
105	NO reduction by CO over gold catalysts based on ceria supports, prepared by mechanochemical activation, modified by Me3+ (Me=Al or lanthanides): Effect of water in the feed gas. Applied Catalysis B: Environmental, 2009, 90, 286-294.	10.8	17
106	Design of Cobalt Nanoparticles with Tailored Structural and Morphological Properties via O/W and W/O Microemulsions and Their Deposition onto Silica. Catalysts, 2015, 5, 442-459.	1.6	17
107	New HDS catalysts based on thiol functionalized mesoporous silica supports. Applied Catalysis A: General, 2010, 386, 43-50.	2.2	16
108	Structure control of silica-supported mono and bimetallic Au–Pt catalysts via mercapto capping synthesis. Journal of Catalysis, 2013, 298, 170-178.	3.1	16

#	Article	IF	CITATIONS
109	Effects of Synthesis on the Structural Properties and Methane Partial Oxidation Activity of Ni/CeO2 Catalyst. Catalysts, 2018, 8, 220.	1.6	16
110	Nano-Structured Gold Catalysts Supported on CeO2 and CeO2-Al2O3 for NOx Reduction by CO: Effect of Catalyst Pretreatment and Feed Composition. Journal of Nanoscience and Nanotechnology, 2008, 8, 867-873.	0.9	15
111	Noble metals supported on binary γ-Al2O3-α-Ga2O3 oxide as potential low-temperature water-gas shift catalysts. Fuel, 2020, 266, 117031.	3.4	15
112	Effect of Y Modified Ceria Support in Mono and Bimetallic Pd–Au Catalysts for Complete Benzene Oxidation. Catalysts, 2018, 8, 283.	1.6	14
113	Chemical Evolution of Interstellar Methanol Ice Analogs upon Ultraviolet Irradiation: The Role of the Substrate. Astrophysical Journal, 2018, 858, 35.	1.6	14
114	Mechanochemically Prepared Co3O4-CeO2 Catalysts for Complete Benzene Oxidation. Catalysts, 2021, 11, 1316.	1.6	14
115	Structural insight in TiO2 supported CoFe catalysts for Fischer–Tropsch synthesis at ambient pressure. Applied Catalysis A: General, 2020, 600, 117621.	2.2	13
116	Novel transformations amongst mesostructured VPO phases synthesized through surfactant assisted organization from an exfoliated solution of VOPO4·2H2O. Microporous and Mesoporous Materials, 2010, 128, 213-222.	2.2	12
117	Promotional Effect of Gold on the WGS Activity of Alumina-Supported Copper-Manganese Mixed Oxides. Catalysts, 2018, 8, 563.	1.6	12
118	Plain and CeO2 – Supported LaxNiOy catalysts for partial oxidation of CH4. Catalysis Today, 2018, 307, 189-196.	2.2	11
119	Model Pumices Supported Metal Catalysts. Journal of Catalysis, 1997, 171, 169-176.	3.1	10
120	Enhanced CO ₂ Hydrogenation to C ₂₊ Hydrocarbons over Mesoporous <i>x</i> %Fe ₂ O ₃ –Al ₂ O ₃ Catalysts. Industrial & Engineering Chemistry Research, 2021, 60, 18660-18671.	1.8	10
121	Pumice-Supported Nickel Catalysts. Journal of Catalysis, 1997, 172, 463-470.	3.1	9
122	Physicochemical investigation of cobalt?iron cyanide nanoparticles synthesized by a novel solid?solid reaction in confined space. Colloid and Polymer Science, 2004, 283, 265-276.	1.0	9
123	Insights into SO2 Interaction with Pd/Co3O4–CeO2 Catalysts for Methane Oxidation. Topics in Catalysis, 2009, 52, 1989-1994.	1.3	9
124	Pd (1Âwt%)/LaMn0.4Fe0.6O3 Catalysts Supported Over Silica SBA-15: Effect of Perovskite Loading and Support Morphology on Methane Oxidation Activity and SO2 Tolerance. Topics in Catalysis, 2012, 55, 782-791.	1.3	9
125	SOFT X-RAY IRRADIATION OF SILICATES: IMPLICATIONS FORÂDUST EVOLUTION IN PROTOPLANETARY DISKS. Astrophysical Journal, 2016, 828, 29.	1.6	9
126	Improved Water–Gas Shift Performance of Au/NiAl LDHs Nanostructured Catalysts via CeO2 Addition. Nanomaterials, 2021, 11, 366.	1.9	9

#	Article	IF	CITATIONS
127	EXAFS and XRD study of Pd–Ag bimetallic catalysts supported on pumice from organometallic precursors. Journal of Non-Crystalline Solids, 2001, 293-295, 682-687.	1.5	8
128	Status of the EPIC thin and medium filters on-board XMM-Newton after more than 10 years of operation I: laboratory measurements on back-up filters. Proceedings of SPIE, 2013, , .	0.8	8
129	Impact of ceria loading on the preferential CO oxidation over gold catalysts on CeO2/Al2O3 and Y-doped CeO2/Al2O3 supports prepared by mechanical mixing. Catalysis Today, 2020, 357, 547-555.	2.2	8
130	CO2 reforming of CH4 over Ni supported on SiO2 modified by TiO2 and ZrO2: Effect of the support synthesis procedure. Applied Catalysis A: General, 2022, 642, 118704.	2.2	8
131	Natural Pumice by XPS. Surface Science Spectra, 1994, 3, 112-120.	0.3	7
132	Exploring the role of promoters (Au, Cu and Re) in the performance of Ni–Al layered double hydroxides for water-gas shift reaction. International Journal of Hydrogen Energy, 2023, 48, 11998-12014.	3.8	7
133	Structural characterization of Rh/pumice SMAD catalysts. European Physical Journal D, 1999, 7, 577-586.	0.6	6
134	Alumina and Alumina–Baria Supported Cobalt Catalysts for DeNO x : Influence of the Support and Cobalt Content on the Catalytic Performance. Topics in Catalysis, 2009, 52, 1826-1831.	1.3	6
135	Interaction of Gold with Co-Condensed and Grafted HMS-SH Silica: A 29Si {1H} CP-MAS NMR Spectroscopy, XRD, XPS and Au LIII EXAFS Study. European Journal of Inorganic Chemistry, 2010, 2010, 3628-3635.	1.0	6
136	Nanosized gold catalysts on Pr-modified ceria for pure hydrogen production via WGS reaction. Materials Chemistry and Physics, 2015, 157, 138-146.	2.0	6
137	FTIR investigation under reaction conditions during CO oxidation over Ru(x)-CeO2 catalysts. Molecular Catalysis, 2020, 493, 111086.	1.0	6
138	Molecular MNN auger spectra of gaseous tetramethyltin and hexamethylditin. Journal of Electron Spectroscopy and Related Phenomena, 1985, 36, 281-296.	0.8	5
139	Hydrodesulfurization cobalt-based catalysts modified by gold. Gold Bulletin, 2007, 40, 130-134.	3.2	5
140	Pure hydrogen production via PROX over gold catalysts supported on Pr-modified ceria. Fuel, 2014, 134, 628-635.	3.4	5
141	Resonance photoemission and near edge X-ray absorption fine structure (NEXAFS) of Ni3Al(111) covered with CO. Surface Science, 1992, 275, 75-81.	0.8	4
142	Complete Benzene Oxidation over Mono and Bimetallic Pd—Au Catalysts on Alumina-Supported Y-Doped Ceria. Applied Sciences (Switzerland), 2020, 10, 1088.	1.3	4
143	Supported Co3O4-CeO2 monoliths: effect of preparation method and Pd-Pt promotion on the CO/CH4 oxidation activity. Studies in Surface Science and Catalysis, 2006, 162, 657-664.	1.5	3
144	Surface Study of Pumice Supported Nickel Catalysts Used in the Hydrogenation of CO. Studies in Surface Science and Catalysis, 1998, 119, 185-190.	1.5	2

#	Article	IF	CITATIONS
145	The Effect of Potassium on TiO2 Supported Bimetallic Cobalt–Iron Catalysts. Topics in Catalysis, 2020, 63, 1424-1433.	1.3	2
146	Gold-Based Catalysts for Complete Formaldehyde Oxidation: Insights into the Role of Support Composition. Catalysts, 2022, 12, 705.	1.6	2
147	Gold catalysis in Southern Italy. Gold Bulletin, 2009, 42, 66-73.	3.2	0
148	CERIA-BASED CATALYSTS FOR AIR POLLUTION ABATEMENT. Catalytic Science Series, 2013, , 813-879.	0.6	0