Chalmers Vasquez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10517488/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zika virus evolution and spread in the Americas. Nature, 2017, 546, 411-415.	27.8	323
2	Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature, 2017, 546, 401-405.	27.8	298
3	Local Mosquito-Borne Transmission of Zika Virus — Miami-Dade and Broward Counties, Florida, June–August 2016. Morbidity and Mortality Weekly Report, 2016, 65, 1032-1038.	15.1	174
4	Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Scientific Reports, 2019, 9, 15335.	3.3	88
5	Proliferation of Aedes aegypti in urban environments mediated by the availability of key aquatic habitats. Scientific Reports, 2020, 10, 12925.	3.3	45
6	Community Composition and Year-round Abundance of Vector Species of Mosquitoes make Miami-Dade County, Florida a Receptive Gateway for Arbovirus entry to the United States. Scientific Reports, 2019, 9, 8732.	3.3	43
7	Assessment of the effectiveness of BG-Sentinel traps baited with CO2 and BG-Lure for the surveillance of vector mosquitoes in Miami-Dade County, Florida. PLoS ONE, 2019, 14, e0212688.	2.5	35
8	Modeling Mosquito-Borne Disease Spread in U.S. Urbanized Areas: The Case of Dengue in Miami. PLoS ONE, 2016, 11, e0161365.	2.5	33
9	Urbanization favors the proliferation of Aedes aegypti and Culex quinquefasciatus in urban areas of Miami-Dade County, Florida. Scientific Reports, 2021, 11, 22989.	3.3	32
10	Ornamental bromeliads of Miami-Dade County, Florida are important breeding sites for Aedes aegypti (Diptera: Culicidae). Parasites and Vectors, 2018, 11, 283.	2.5	24
11	Mosquito Control Activities during Local Transmission of Zika Virus, Miami-Dade County, Florida, USA, 2016. Emerging Infectious Diseases, 2020, 26, 881-890.	4.3	22
12	Mosquito Adaptation to the Extreme Habitats of Urban Construction Sites. Trends in Parasitology, 2019, 35, 607-614.	3.3	20
13	Establishment of Aedes (Ochlerotatus) scapularis (Diptera: Culicidae) in Mainland Florida, With Notes on the Ochlerotatus Group in the United States. Journal of Medical Entomology, 2021, 58, 717-729.	1.8	17
14	Modelling distributions of Aedes aegypti and Aedes albopictus using climate, host density and interspecies competition. PLoS Neglected Tropical Diseases, 2021, 15, e0009063.	3.0	16
15	Zika Virus MB16-23 in Mosquitoes, Miami-Dade County, Florida, USA, 2016. Emerging Infectious Diseases, 2018, 24, 808-810.	4.3	15
16	Effectiveness of adulticide and larvicide in controlling high densities of Aedes aegypti in urban environments. PLoS ONE, 2021, 16, e0246046.	2.5	15
17	Construction sites in Miami-Dade County, Florida are highly favorable environments for vector mosquitoes. PLoS ONE, 2018, 13, e0209625.	2.5	12
18	Tire shops in Miami-Dade County, Florida are important producers of vector mosquitoes. PLoS ONE, 2019, 14, e0217177.	2.5	11

CHALMERS VASQUEZ

#	Article	IF	CITATIONS
19	Potential Distribution of Aedes (Ochlerotatus) scapularis (Diptera: Culicidae): A Vector Mosquito New to the Florida Peninsula. Insects, 2021, 12, 213.	2.2	9
20	Diel activity patterns of two distinct populations of Aedes aegypti in Miami, FL and Brownsville, TX. Scientific Reports, 2022, 12, 5315.	3.3	9
21	Urban farms in Miami-Dade county, Florida have favorable environments for vector mosquitoes. PLoS ONE, 2020, 15, e0230825.	2.5	8
22	Evaluation of the effectiveness of BG-Sentinel and CDC light traps in assessing the abundance, richness, and community composition of mosquitoes in rural and natural areas. Parasites and Vectors, 2022, 15, 51.	2.5	8
23	Cemeteries in Miami-Dade County, Florida are important areas to be targeted in mosquito management and control efforts. PLoS ONE, 2020, 15, e0230748.	2.5	7
24	Mosquito surveillance in maritime entry ports in Miami-Dade County, Florida to increase preparedness and allow the early detection of invasive mosquito species. PLoS ONE, 2022, 17, e0267224.	2.5	6
25	Invasion, establishment, and spread of invasive mosquitoes from the Culex coronator complex in urban areas of Miami-Dade County, Florida. Scientific Reports, 2021, 11, 14620.	3.3	5
26	A molecular surveillance-guided vector control response to concurrent dengue and West Nile virus outbreaks in a COVID-19 hotspot of Florida. The Lancet Regional Health Americas, 2022, 11, 100231.	2.6	4
27	Spatially clustered count data provide more efficient search strategies in invasion biology and disease control. Ecological Applications, 2021, 31, e02329.	3.8	1