
Jonathan D Gitlin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10517159/publications.pdf Version: 2024-02-01

ΙΟΝΑΤΗΛΝ D CITUN

#	Article	IF	CITATIONS
1	The Role of Copper in Neurodegenerative Disease. Neurobiology of Disease, 1999, 6, 221-230.	4.4	780
2	C <scp>ERULOPLASMIN</scp> M <scp>ETABOLISM AND</scp> F <scp>UNCTION</scp> . Annual Review of Nutrition, 2002, 22, 439-458.	10.1	755
3	The Copper Chaperone for Superoxide Dismutase. Journal of Biological Chemistry, 1997, 272, 23469-23472.	3.4	723
4	Lymphocytes recognize human vascular endothelial and dermal fibroblast Ia antigens induced by recombinant immune interferon. Nature, 1983, 305, 726-729.	27.8	499
5	Copper and Iron Disorders of the Brain. Annual Review of Neuroscience, 2007, 30, 317-337.	10.7	466
6	Wilson disease. Gastroenterology, 2003, 125, 1868-1877.	1.3	341
7	Identification and Functional Expression of HAH1, a Novel Human Gene Involved in Copper Homeostasis. Journal of Biological Chemistry, 1997, 272, 9221-9226.	3.4	327
8	Biochemical Characterization of the Wilson Disease Protein and Functional Expression in the Yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 1997, 272, 21461-21466.	3.4	296
9	NMDA Receptor Activation Mediates Copper Homeostasis in Hippocampal Neurons. Journal of Neuroscience, 2005, 25, 239-246.	3.6	275
10	Mutant SOD1 causes motor neuron disease independent of copper chaperone–mediated copper loading. Nature Neuroscience, 2002, 5, 301-307.	14.8	253
11	The Copper Chaperone CCS Directly Interacts with Copper/Zinc Superoxide Dismutase. Journal of Biological Chemistry, 1998, 273, 23625-23628.	3.4	202
12	Use of desferrioxamine in the treatment of aceruloplasminemia. Annals of Neurology, 1997, 41, 404-407.	5.3	181
13	Brain Copper Content and Cuproenzyme Activity Do Not Vary with Prion Protein Expression Level. Journal of Biological Chemistry, 2000, 275, 7455-7458.	3.4	168
14	The Copper Toxicosis Gene Product Murr1 Directly Interacts with the Wilson Disease Protein. Journal of Biological Chemistry, 2003, 278, 41593-41596.	3.4	163
15	Role of the Menkes copper-transporting ATPase in NMDA receptor-mediated neuronal toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14919-14924.	7.1	161
16	Essential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1215-1220.	7.1	160
17	Aceruloplasminemia. Pediatric Research, 1998, 44, 271-276.	2.3	148
18	Functional Expression of the Menkes Disease Protein Reveals Common Biochemical Mechanisms Among the Copper-transporting P-type ATPases. Journal of Biological Chemistry, 1998, 273, 3765-3770.	3.4	145

JONATHAN D GITLIN

#	Article	lF	CITATIONS
19	Wilson's Disease. Seminars in Liver Disease, 2000, Volume 20, 353-364.	3.6	143
20	Hepatic copper metabolism: Insights from genetic disease. Hepatology, 2003, 37, 1241-1247.	7.3	140
21	Mechanisms of Copper Incorporation into Human Ceruloplasmin. Journal of Biological Chemistry, 2002, 277, 46632-46638.	3.4	138
22	Randomized Controlled Trial of Exogenous Surfactant for the Treatment of Hyaline Membrane Disease. Pediatrics, 1987, 79, 31-37.	2.1	135
23	Distinct Wilson's Disease Mutations in ATP7B Are Associated With Enhanced Binding to COMMD1 and Reduced Stability of ATP7B. Gastroenterology, 2007, 133, 1316-1326.	1.3	133
24	HAH1 Is a Copper-binding Protein with Distinct Amino Acid Residues Mediating Copper Homeostasis and Antioxidant Defense. Journal of Biological Chemistry, 1998, 273, 1749-1754.	3.4	130
25	Copper Homeostasis in the CNS: A Novel Link Between the NMDA Receptor and Copper Homeostasis in the Hippocampus. Molecular Neurobiology, 2006, 33, 81-90.	4.0	127
26	Atp7a determines a hierarchy of copper metabolism essential for notochord development. Cell Metabolism, 2006, 4, 155-162.	16.2	116
27	Hepatocyte-specific localization and copper-dependent trafficking of the Wilson's disease protein in the liver. American Journal of Physiology - Renal Physiology, 1999, 276, G639-G646.	3.4	105
28	A Novel Pineal Night-Specific ATPase Encoded by the Wilson Disease Gene. Journal of Neuroscience, 1999, 19, 1018-1026.	3.6	88
29	Essential role of lysyl oxidases in notochord development. Developmental Biology, 2007, 307, 202-213.	2.0	79
30	Biochemical Analysis of a Missense Mutation in Aceruloplasminemia. Journal of Biological Chemistry, 2002, 277, 1375-1380.	3.4	77
31	Mechanisms of the Copper-dependent Turnover of the Copper Chaperone for Superoxide Dismutase. Journal of Biological Chemistry, 2006, 281, 13581-13587.	3.4	70
32	Kinesin family member 6 (kif6) is necessary for spine development in zebrafish. Developmental Dynamics, 2014, 243, 1646-1657.	1.8	70
33	The copper-iron connection: Hereditary aceruloplasminemia. Seminars in Hematology, 2002, 39, 282-289.	3.4	68
34	GLUT1 Deficiency Links Nutrient Availability and Apoptosis during Embryonic Development. Journal of Biological Chemistry, 2006, 281, 13382-13387.	3.4	68
35	Increased plasma lipid peroxidation in patients with aceruloplasminemia. Free Radical Biology and Medicine, 1996, 20, 757-760.	2.9	67
36	Copper deficiency. Current Opinion in Gastroenterology, 2007, 23, 187-192.	2.3	67

JONATHAN D GITLIN

#	Article	IF	CITATIONS
37	Regulation of the Copper Chaperone CCS by XIAP-Mediated Ubiquitination. Molecular and Cellular Biology, 2010, 30, 1923-1936.	2.3	64
38	Elesclomol restores mitochondrial function in genetic models of copper deficiency. Proceedings of the United States of America, 2018, 115, 8161-8166.	7.1	63
39	Assembling the pieces. Nature Chemical Biology, 2008, 4, 145-147.	8.0	62
40	Copper chaperones for cytochrome c oxidase and human disease. Journal of Bioenergetics and Biomembranes, 2002, 34, 381-388.	2.3	61
41	Role of Copper in the Proteosome-mediated Degradation of the Multicopper Oxidase Hephaestin. Journal of Biological Chemistry, 2004, 279, 25696-25702.	3.4	59
42	Chemical genetics suggests a critical role for lysyl oxidase in zebrafish notochord morphogenesis. Molecular BioSystems, 2007, 3, 51-59.	2.9	58
43	IV. Wilson's disease and Menkes disease. American Journal of Physiology - Renal Physiology, 1999, 276, G311-G314.	3.4	51
44	Mechanisms of Biosynthesis of Mammalian Copper/Zinc Superoxide Dismutase. Journal of Biological Chemistry, 2003, 278, 33602-33608.	3.4	51
45	In vivo correction of a Menkes disease model using antisense oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3909-3914.	7.1	49
46	Zebrafish Mutants calamity and catastrophe Define Critical Pathways of Gene–Nutrient Interactions in Developmental Copper Metabolism. PLoS Genetics, 2008, 4, e1000261.	3.5	48
47	Essential role for the alpha 1 chain of type VIII collagen in Zebrafish notochord formation. Developmental Dynamics, 2008, 237, 3715-3726.	1.8	46
48	The Neuronal Adaptor Protein X11α Interacts with the Copper Chaperone for SOD1 and Regulates SOD1 Activity. Journal of Biological Chemistry, 2001, 276, 9303-9307.	3.4	44
49	Essential role for fibrillinâ€⊋ in zebrafish notochord and vascular morphogenesis. Developmental Dynamics, 2008, 237, 2844-2861.	1.8	36
50	A fungal multicopper oxidase restores iron homeostasis in aceruloplasminemia. Blood, 2004, 103, 4672-4673.	1.4	31
51	Maternofetal and neonatal copper requirements revealed by enterocyte-specific deletion of the Menkes disease protein. American Journal of Physiology - Renal Physiology, 2012, 303, G1236-G1244.	3.4	31
52	How to make a metalloprotein. , 2001, 8, 733-734.		29
53	Xâ€linked spinal muscular atrophy in mice caused by autonomous loss of ATP7A in the motor neuron. Journal of Pathology, 2015, 236, 241-250.	4.5	27
54	Regulation of human and murine complement: Comparison of 5? structural and functional elements regulating human and murine complement factor B gene expression. Molecular and Cellular Biochemistry, 1989, 89, 1-14.	3.1	26

JONATHAN D GITLIN

#	Article	IF	CITATIONS
55	Conditional Knockout of the Menkes Disease Copper Transporter Demonstrates Its Critical Role in Embryogenesis. PLoS ONE, 2012, 7, e43039.	2.5	24
56	Lysyl oxidase-like 3b is critical for cartilage maturation during zebrafish craniofacial development. Matrix Biology, 2011, 30, 178-187.	3.6	22
57	Autonomous requirements of the Menkes disease protein in the nervous system. American Journal of Physiology - Cell Physiology, 2015, 309, C660-C668.	4.6	18
58	Microvillar and ciliary defects in zebrafish lacking an actin-binding bioactive peptide amidating enzyme. Scientific Reports, 2018, 8, 4547.	3.3	17
59	Structure, Expression, and Chromosomal Localization of the Mouse Atox1 Gene. Genomics, 2000, 63, 294-297.	2.9	16
60	Chromosomal localization of CCS, the copper chaperone for Cu/Zn superoxide dismutase. Mammalian Genome, 2000, 11, 409-411.	2.2	11
61	Copper and nitric oxide meet in the plasma. Nature Chemical Biology, 2006, 2, 452-453.	8.0	10
62	The sky blue protein. Translational Research, 1999, 134, 431-432.	2.3	9
63	Characterization of trace metal content in the developing zebrafish embryo. PLoS ONE, 2017, 12, e0179318.	2.5	9
64	PLANT SCIENCE: Distributing Nutrition. Science, 2006, 314, 1252-1253.	12.6	6
65	Copper Homeostasis: Specialized Functions of the Late Secretory Pathway. Developmental Cell, 2014, 29, 631-632.	7.0	4
66	The Copper Transporting Atpases in Human Disease. , 2002, , 9-13.		0
67	Brain iron disorders. , 2005, , 880-889.		Ο
68	Commentary. Clinical Chemistry, 2011, 57, 1106-1107.	3.2	0
69	Hepatic Copper Transport. , 2004, , 211-220.		Ο