
Bert Lauwers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10516835/publications.pdf Version: 2024-02-01

REDTIALINGERS

#	Article	IF	CITATIONS
1	Experimental and numerical investigations of material removal process in electrochemical discharge machining of glass in discharge regime. Precision Engineering, 2021, 72, 706-716.	3.4	13
2	Influence of post-heat treatments on fatigue response of low-alloyed carbon-manganese steel material manufactured by Direct Energy Deposition-Arc technique. Materials Letters, 2021, 302, 130465.	2.6	1
3	Sustainable manufacturing of prototype automotive gear components within a multi-axis machining platform. Procedia Manufacturing, 2020, 43, 103-110.	1.9	2
4	Cement augmentation of metastatic lesions in the proximal femur can improve bone strength. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104, 103648.	3.1	8
5	Development of low-cost production process for prototype components based on Wire and Arc Additive Manufacturing (WAAM). Procedia CIRP, 2020, 95, 60-65.	1.9	5
6	Hybrid Manufacturing based on the combination of Mechanical and Electro Physical–Chemical Processes. Procedia CIRP, 2020, 95, 649-661.	1.9	2
7	Selective laser hardening of injection mould components on multi-axis machining centers. Procedia CIRP, 2020, 95, 909-914.	1.9	0
8	Prediction of local sintering in laser beam machining of green Y-TZP ceramic. CIRP Annals - Manufacturing Technology, 2020, 69, 225-228.	3.6	2
9	Investigation of working gap phenomena in Mechano-Electrochemical Milling. Procedia CIRP, 2020, 95, 672-677.	1.9	3
10	A life cycle energy analysis integrated process planning approach to foster the sustainability of discrete part manufacturing. Energy, 2018, 153, 604-617.	8.8	10
11	Experimental investigation of the process behaviour in Mechano-Electrochemical Milling. CIRP Annals - Manufacturing Technology, 2018, 67, 217-220.	3.6	10
12	Overview of Hybrid Machining Processes. , 2018, , 21-41.		10
13	Lead Time Reduction by High Precision 5-axis Milling of a Prototype Gear. Procedia CIRP, 2016, 46, 440-443.	1.9	10
14	Shaping of engineering ceramics by electro, chemical and physical processes. CIRP Annals - Manufacturing Technology, 2016, 65, 761-784.	3.6	64
15	An operation-mode based simulation approach to enhance the energy conservation of machine tools. Journal of Cleaner Production, 2015, 101, 348-359.	9.3	42
16	Tool path generation for single point incremental forming using intelligent sequencing and multi-step mesh morphing techniques. International Journal of Material Forming, 2015, 8, 517-532.	2.0	25
17	Productivity Improvement Through the Application of Hybrid Processes. Lecture Notes in Production Engineering, 2015, , 101-116.	0.4	1
18	Energy-based optimization of the material stock allowance for turning-grinding process sequence. International Journal of Advanced Manufacturing Technology, 2014, 75, 503-513.	3.0	10

Bert Lauwers

#	Article	IF	CITATIONS
19	Development of a Flexible Laser Hardening & Machining Center and Proof of Concept on C-45 Steel. Physics Procedia, 2014, 56, 1083-1093.	1.2	6
20	Tool path generation framework for accurate manufacture of complex 3D sheet metal parts using single point incremental forming. Computers in Industry, 2014, 65, 563-584.	9.9	49
21	Hybrid processes in manufacturing. CIRP Annals - Manufacturing Technology, 2014, 63, 561-583.	3.6	316
22	Graph-based optimization of five-axis machine tool movements by varying tool orientation. International Journal of Advanced Manufacturing Technology, 2014, 74, 307-318.	3.0	33
23	Micromilling of Sintered ZrO2 Ceramic via cBN and Diamond Coated Tools. Procedia CIRP, 2014, 14, 371-376.	1.9	27
24	Fast Production of Gear Prototypes – A Comparison of Technologies. Procedia CIRP, 2014, 14, 77-82.	1.9	26
25	Tool path compensation strategies for single point incremental sheet forming using multivariate adaptive regression splines. CAD Computer Aided Design, 2013, 45, 575-590.	2.7	98
26	An Integrated Approach to Accurate Part Manufacture in Single Point Incremental Forming Using Feature Based Graph Topology. Key Engineering Materials, 2012, 504-506, 869-876.	0.4	10
27	Advanced feature detection algorithms for incrementally formed sheet metal parts. Transactions of Nonferrous Metals Society of China, 2012, 22, s315-s322.	4.2	15
28	Influence of Material Properties on Accuracy Response Surfaces in Single Point Incremental Forming. Key Engineering Materials, 2012, 504-506, 919-924.	0.4	13
29	Machinability Investigation on High Speed Hard Turning of ZrO2 with PCD Tools. Procedia CIRP, 2012, 1, 500-505.	1.9	18
30	Optimization of Energy Consumption and Surface Quality in Finish Turning. Procedia CIRP, 2012, 1, 512-517.	1.9	92
31	Computing of the actual shape of removed material for five-axis flat-end milling. CAD Computer Aided Design, 2012, 44, 1103-1114.	2.7	12
32	Five-axis milling tool path generation with dynamic step-over calculation based on integrated material removal simulation. CIRP Annals - Manufacturing Technology, 2012, 61, 139-142.	3.6	10
33	Carbon nanofillers for machining insulating ceramics. Materials Today, 2011, 14, 496-501.	14.2	65
34	Accuracy Improvement in Single Point Incremental Forming through Systematic Study of Feature Interactions. Key Engineering Materials, 2011, 473, 881-888.	0.4	25
35	Multivariate Adaptive Regression Splines as a Tool to Improve the Accuracy of Parts Produced by FSPIF. Key Engineering Materials, 2011, 473, 841-846.	0.4	21
36	Process capabilities of Micro-EDM and its applications. International Journal of Advanced Manufacturing Technology, 2010, 47, 11-19.	3.0	135

Bert Lauwers

#	Article	IF	CITATIONS
37	Electrical discharge machining of ZrO2 toughened WC composites. Materials Chemistry and Physics, 2010, 123, 114-120.	4.0	19
38	Pulsed Electric Current Sintering of Electrical Discharge Machinable Ceramics. Advances in Science and Technology, 2010, 62, 175-184.	0.2	1
39	Reciprocative sliding friction and wear properties of electrical discharge machined ZrO ₂ â€based composites. Lubrication Science, 2009, 21, 378-396.	2.1	2
40	Processing of ultrafine ZrO2 toughened WC composites. Journal of the European Ceramic Society, 2009, 29, 3371-3378.	5.7	78
41	Tribological Characteristics of WC-Ni and WC-Co Cemented Carbide in Dry Reciprocating Sliding Contact. Tribology Transactions, 2009, 52, 481-491.	2.0	26
42	EDM machinability and frictional behaviour of ZrO _{2-TiCN composites. International Journal of Machining and Machinability of Materials, 2008, 3, 226.}	0.1	4
43	Micro-EDM process investigation of Si _{3N_{4 TiN ceramic composites for the development of micro-fuel-based power units. International Journal of Manufacturing Research, 2008, 3, 27.}}	0.2	19
44	Feature Based Approach for Increasing the Accuracy of the SPIF Process. Key Engineering Materials, 2007, 344, 527-534.	0.4	46
45	Influence of Secondary Electro-Conductive Phases on Sliding Wear Performance of Zirconia Based Ceramic Composites. Materials Science Forum, 2007, 561-565, 651-654.	0.3	1
46	3D Morphing for Generating Intermediate Roughing Levels in Multi-Axis Machining. Computer-Aided Design and Applications, 2005, 2, 115-123.	0.6	14
47	STL Model Segmentation for Multi-Axis Machining Operations Planning. Computer-Aided Design and Applications, 2004, 1, 277-284.	0.6	13
48	Tool Path Generation for Single Point Incremental Forming Using Intelligent Sequencing and Multi-Step Mesh Morphing Techniques. Key Engineering Materials, 0, 554-557, 1408-1418.	0.4	7