List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1051563/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 2011, 102, 17-25.	4.8	1,240
2	Shaping the calcium signature. New Phytologist, 2009, 181, 275-294.	3.5	638
3	Emerging mechanisms for heavy metal transport in plants. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1465, 104-126.	1.4	495
4	Protein Phylogenetic Analysis of Ca2+/cation Antiporters and Insights into their Evolution in Plants. Frontiers in Plant Science, 2012, 3, 1.	1.7	490
5	Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresource Technology, 2010, 101, 4499-4507.	4.8	438
6	Managing the manganese: molecular mechanisms of manganese transport and homeostasis. New Phytologist, 2005, 167, 733-742.	3.5	312
7	Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18830-18835.	3.3	253
8	A role for theAtMTP11gene of Arabidopsis in manganese transport and tolerance. Plant Journal, 2007, 51, 198-210.	2.8	235
9	The Protein Kinase SOS2 Activates the Arabidopsis H+/Ca2+ Antiporter CAX1 to Integrate Calcium Transport and Salt Tolerance. Journal of Biological Chemistry, 2004, 279, 2922-2926.	1.6	223
10	The Monosaccharide Transporter Gene, AtSTP4, and the Cell-Wall Invertase, Atβfruct1, Are Induced in Arabidopsis during Infection with the Fungal Biotroph Erysiphe cichoracearum Â. Plant Physiology, 2003, 132, 821-829.	2.3	222
11	The Arabidopsis cax1 Mutant Exhibits Impaired Ion Homeostasis, Development, and Hormonal Responses and Reveals Interplay among Vacuolar Transporters. Plant Cell, 2003, 15, 347-364.	3.1	207
12	Functional Association of Arabidopsis CAX1 and CAX3 Is Required for Normal Growth and Ion Homeostasis. Plant Physiology, 2005, 138, 2048-2060.	2.3	190
13	ECA3, a Golgi-Localized P2A-Type ATPase, Plays a Crucial Role in Manganese Nutrition in Arabidopsis. Plant Physiology, 2008, 146, 116-128.	2.3	155
14	Increased Calcium Levels and Prolonged Shelf Life in Tomatoes Expressing Arabidopsis H+/Ca2+ Transporters. Plant Physiology, 2005, 139, 1194-1206.	2.3	153
15	Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic. Waste Management, 2019, 97, 105-114.	3.7	130
16	Vacuolar Ca2+ uptake. Cell Calcium, 2011, 50, 139-146.	1.1	126
17	<scp>CAX</scp> â€ing a wide net: Cation/H ⁺ transporters in metal remediation and abiotic stress signalling. Plant Biology, 2016, 18, 741-749.	1.8	115
18	The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity. Planta, 2008, 227, 659-669.	1.6	110

#	Article	IF	CITATIONS
19	Characterization of CAX4, an Arabidopsis H+/Cation Antiporter. Plant Physiology, 2002, 128, 1245-1254.	2.3	109
20	Elucidating the Mechanisms of Assembly and Subunit Interaction of the Cellulose Synthase Complex of Arabidopsis Secondary Cell Walls. Journal of Biological Chemistry, 2009, 284, 3833-3841.	1.6	108
21	Oxidative stress-tolerant microalgae strains are highly efficient for biofuel feedstock production onÂwastewater. Biomass and Bioenergy, 2013, 56, 284-294.	2.9	106
22	Regulation of CAX1, an Arabidopsis Ca2+/H+ Antiporter. Identification of an N-Terminal Autoinhibitory Domain. Plant Physiology, 2001, 127, 1020-1029.	2.3	102
23	Root development under metal stress in <i>Arabidopsis thaliana</i> requires the H ⁺ /cation antiporter CAX4. New Phytologist, 2009, 183, 95-105.	3.5	102
24	Acclimation of Microalgae to Wastewater Environments Involves Increased Oxidative Stress Tolerance Activity. Plant and Cell Physiology, 2014, 55, 1848-1857.	1.5	99
25	Manganese Specificity Determinants in the ArabidopsisMetal/H+ Antiporter CAX2. Journal of Biological Chemistry, 2003, 278, 6610-6617.	1.6	98
26	Transcriptional Engineering of Microalgae: Prospects for High-Value Chemicals. Trends in Biotechnology, 2017, 35, 95-99.	4.9	92
27	Ca2+/H+ exchange by acidic organelles regulates cell migration in vivo. Journal of Cell Biology, 2016, 212, 803-813.	2.3	91
28	PSR1 Is a Global Transcriptional Regulator of Phosphorus Deficiency Responses and Carbon Storage Metabolism in <i>Chlamydomonas reinhardtii</i> Â Â. Plant Physiology, 2016, 170, 1216-1234.	2.3	91
29	Functional and regulatory analysis of the Arabidopsis thaliana CAX2 cation transporter. Plant Molecular Biology, 2004, 56, 959-971.	2.0	89
30	Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater-tolerant microalgae strains. Algal Research, 2017, 24, 89-96.	2.4	87
31	Bioaccumulation of silver nanoparticles into <i>Daphnia magna</i> from a freshwater algal diet and the impact of phosphate availability. Nanotoxicology, 2014, 8, 305-316.	1.6	84
32	Multiple Transport Pathways for Mediating Intracellular pH Homeostasis: The Contribution of H+/ion Exchangers. Frontiers in Plant Science, 2012, 3, 11.	1.7	79
33	Metabolic responses of eukaryotic microalgae to environmental stress limit the ability of FT-IR spectroscopy for species identification. Algal Research, 2015, 11, 148-155.	2.4	74
34	Mechanism of N-terminal Autoinhibition in theArabidopsis Ca2+/H+ Antiporter CAX1. Journal of Biological Chemistry, 2002, 277, 26452-26459.	1.6	67
35	Comparative analysis of CAX2-like cation transporters indicates functional and regulatory diversity. Biochemical Journal, 2009, 418, 145-154.	1.7	66
36	Structural Determinants of Ca2+ Transport in the Arabidopsis H+/Ca2+Antiporter CAX1. Journal of Biological Chemistry, 2001, 276, 43152-43159.	1.6	62

#	Article	IF	CITATIONS
37	Distinct N-Terminal Regulatory Domains of Ca2+/H+ Antiporters. Plant Physiology, 2002, 130, 1054-1062.	2.3	60
38	In planta regulation of the Arabidopsis Ca2+/H+ antiporter CAX1. Journal of Experimental Botany, 2007, 58, 3419-3427.	2.4	59
39	Don't shoot the (second) messenger: endomembrane transporters and binding proteins modulate cytosolic Ca2+ levels. Current Opinion in Plant Biology, 2003, 6, 257-262.	3.5	58
40	Microalgal biomass as a biorefinery platform for biobutanol and biodiesel production. Biochemical Engineering Journal, 2020, 153, 107396.	1.8	51
41	Cadmium Exposure and Phosphorus Limitation Increases Metal Content in the Freshwater Alga <i>Chlamydomonas reinhardtii</i> . Environmental Science & Technology, 2011, 45, 7489-7496.	4.6	48
42	Carbon dioxide sequestration in wastewater by a consortium of elevated carbon dioxide-tolerant microalgae. Journal of CO2 Utilization, 2015, 10, 105-112.	3.3	48
43	Functional dependence on calcineurin by variants of the Saccharomyces cerevisiae vacuolar Ca2+/H+ exchanger Vcx1p. Molecular Microbiology, 2004, 54, 1104-1116.	1.2	47
44	Evidence of differential pH regulation of theArabidopsisvacuolar Ca2+/H+antiporters CAX1 and CAX2. FEBS Letters, 2005, 579, 2648-2656.	1.3	46
45	A Cation-regulated and Proton Gradient-dependent Cation Transporter from Chlamydomonas reinhardtii Has a Role in Calcium and Sodium Homeostasis. Journal of Biological Chemistry, 2009, 284, 525-533.	1.6	46
46	Natural Wetlands Are Efficient at Providing Long-Term Metal Remediation of Freshwater Systems Polluted by Acid Mine Drainage. Environmental Science & Technology, 2013, 47, 12029-12036.	4.6	45
47	A vacuolar iron-transporter homologue acts as a detoxifier in Plasmodium. Nature Communications, 2016, 7, 10403.	5.8	45
48	Characterization of a rice (Oryza sativa L.) gene encoding a temperature-dependent chloroplast ï‰-3 fatty acid desaturase. Biochemical and Biophysical Research Communications, 2006, 340, 1209-1216.	1.0	44
49	Phylogenetic analysis and protein structure modelling identifies distinct Ca2+/Cation antiporters and conservation of gene family structure within Arabidopsis and rice species. Rice, 2016, 9, 3.	1.7	43
50	Microbial Community Shifts in Response to Acid Mine Drainage Pollution Within a Natural Wetland Ecosystem. Frontiers in Microbiology, 2018, 9, 1445.	1.5	43
51	ILR2, a novel gene regulating IAA conjugate sensitivity and metal transport in Arabidopsis thaliana. Plant Journal, 2003, 35, 523-534.	2.8	41
52	Functional Studies of Split Arabidopsis Ca2+/H+ Exchangers. Journal of Biological Chemistry, 2009, 284, 34075-34083.	1.6	41
53	Production of lipid-based fuels and chemicals from microalgae: An integrated experimental and model-based optimization study. Algal Research, 2017, 23, 78-87.	2.4	41
54	Kinetic modelling of starch and lipid formation during mixotrophic, nutrient-limited microalgal growth. Bioresource Technology, 2017, 241, 868-878.	4.8	41

#	Article	IF	CITATIONS
55	Models of microalgal cultivation for added-value products - A review. Biotechnology Advances, 2020, 44, 107609.	6.0	39
56	Implications of sludge liquor addition for wastewater-based open pond cultivation of microalgae for biofuel generation and pollutant remediation. Bioresource Technology, 2014, 152, 355-363.	4.8	38
57	Metabolic adaptation of a Chlamydomonas acidophila strain isolated from acid mine drainage ponds with low eukaryotic diversity. Science of the Total Environment, 2019, 647, 75-87.	3.9	38
58	Knockout of Multiple Arabidopsis Cation/H+ Exchangers Suggests Isoform-Specific Roles in Metal Stress Response, Germination and Seed Mineral Nutrition. PLoS ONE, 2012, 7, e47455.	1.1	37
59	Two Glycerol-3-Phosphate Dehydrogenases from <i>Chlamydomonas</i> Have Distinct Roles in Lipid Metabolism. Plant Physiology, 2017, 174, 2083-2097.	2.3	36
60	Organic complexation of U(VI) in reducing soils at a natural analogue site: Implications for uranium transport. Chemosphere, 2020, 254, 126859.	4.2	36
61	The Plasmodium berghei Ca2+/H+ Exchanger, PbCAX, Is Essential for Tolerance to Environmental Ca2+ during Sexual Development. PLoS Pathogens, 2013, 9, e1003191.	2.1	35
62	Spatial and temporal specificity of Ca ²⁺ signalling in <i>Chlamydomonas reinhardtii</i> in response to osmotic stress. New Phytologist, 2016, 212, 920-933.	3.5	35
63	High-throughput metabolic screening of microalgae genetic variation in response to nutrient limitation. Metabolomics, 2016, 12, 9.	1.4	35
64	Dissecting Pathways Involved in Manganese Homeostasis and Stress in Higher Plant Cells. Plant Cell Monographs, 2010, , 95-117.	0.4	32
65	Potential of Bioenergy Production from Microalgae. Current Sustainable/Renewable Energy Reports, 2014, 1, 94-103.	1.2	32
66	Optimisation of microalgal cultivation via nutrient-enhanced strategies: the biorefinery paradigm. Biotechnology for Biofuels, 2021, 14, 64.	6.2	29
67	Expression in Yeast Links Field Polymorphisms in PfATP6 to in Vitro Artemisinin Resistance and Identifies New Inhibitor Classes. Journal of Infectious Diseases, 2013, 208, 468-478.	1.9	25
68	Multi-factor kinetic modelling of microalgal biomass cultivation for optimised lipid production. Bioresource Technology, 2018, 269, 417-425.	4.8	25
69	Microbial bloom formation in a high pH spent nuclear fuel pond. Science of the Total Environment, 2020, 720, 137515.	3.9	24
70	Increased metal tolerance and bioaccumulation of zinc and cadmium in <i>Chlamydomonas reinhardtii</i> expressing a AtHMA4 Câ€ŧerminal domain protein. Biotechnology and Bioengineering, 2020, 117, 2996-3005.	1.7	22
71	Macroalgae as spatial and temporal bioindicators of coastal metal pollution following remediation and diversion of acid mine drainage. Ecotoxicology and Environmental Safety, 2019, 182, 109458.	2.9	21
72	Two additional type IIA Ca2+-ATPases are expressed in Arabidopsis thaliana: evidence that type IIA sub-groups exist. Gene, 1999, 236, 137-147.	1.0	18

#	Article	lF	CITATIONS
73	Exchangers man the pumps. Plant Signaling and Behavior, 2008, 3, 354-356.	1.2	18
74	Radioactivity and the environment: technical approaches to understand the role of arbuscular mycorrhizal plants in radionuclide bioaccumulation. Frontiers in Plant Science, 2015, 6, 580.	1.7	16
75	Ca2+ Pumps and Ca2+ Antiporters in Plant Development. Signaling and Communication in Plants, 2011, , 133-161.	0.5	15
76	Multi-genomic analysis of the cation diffusion facilitator transporters from algae. Metallomics, 2020, 12, 617-630.	1.0	13
77	Radiation Tolerance of Pseudanabaena catenata, a Cyanobacterium Relevant to the First Generation Magnox Storage Pond. Frontiers in Microbiology, 2020, 11, 515.	1.5	13
78	Cloning and Characterization of a PI-like MADS-Box Gene in Phalaenopsis Orchid. BMB Reports, 2007, 40, 845-852.	1.1	13
79	Biochemical signatures of acclimation by Chlamydomonas reinhardtii to different ionic stresses. Algal Research, 2019, 37, 83-91.	2.4	12
80	The association of microbial activity with Fe, S and trace element distribution in sediment cores within a natural wetland polluted by acid mine drainage. Chemosphere, 2019, 231, 432-441.	4.2	11
81	Addition of organic acids to acid mine drainage polluted wetland sediment leads to microbial community structure and functional changes and improved water quality. Environmental Pollution, 2021, 290, 118064.	3.7	10
82	Improved saccharification of Chlorella vulgaris biomass by fungal secreted enzymes for bioethanol production. Algal Research, 2021, 58, 102402.	2.4	9
83	Tea plant roots respond to aluminum-induced mineral nutrient imbalances by transcriptional regulation of multiple cation and anion transporters. BMC Plant Biology, 2022, 22, 203.	1.6	9
84	Mechanisms of detoxification of high copper concentrations by the microalga <i>Chlorella sorokiniana</i> . Biochemical Journal, 2020, 477, 3729-3741.	1.7	8
85	Role of Cation/Proton Exchangers in Abiotic Stress Signaling and Stress Tolerance in Plants. , 2015, , 95-117.		7
86	Biomineralization of Sr by the Cyanobacterium Pseudanabaena catenata Under Alkaline Conditions. Frontiers in Earth Science, 2020, 8, .	0.8	7
87	Multiple environmental factors influence 238U, 232Th and 226Ra bioaccumulation in arbuscular mycorrhizal-associated plants. Science of the Total Environment, 2018, 640-641, 921-934.	3.9	7
88	lsolation of fungal strains for biodegradation and saccharification of microalgal biomass. Biomass and Bioenergy, 2020, 137, 105547.	2.9	6
89	A highly productive mixotrophic fed-batch strategy for enhanced microalgal cultivation. Sustainable Energy and Fuels, 2022, 6, 2771-2782	2.5	6
90	The effects of ionizing radiation on the structure and antioxidative and metal-binding capacity of the cell wall of microalga Chlorella sorokiniana. Chemosphere, 2020, 260, 127553.	4.2	5

#	Article	IF	CITATIONS
91	Specific arbuscular mycorrhizal fungal–plant interactions determine radionuclide and metal transfer into <i>Plantago lanceolata</i> . Plants People Planet, 2021, 3, 667-678.	1.6	4
92	Effects of air pollutants on proton and sucrose transport at the plasma membrane of Ricinus communis. Plant, Cell and Environment, 1999, 22, 221-227.	2.8	3
93	Mechanism and Evolution of Calcium Transport Across the Plant Plasma Membrane. Plant Cell Monographs, 2011, , 275-289.	0.4	3
94	Integrated Computational and Experimental Studies of Microalgal Production of Fuels and Chemicals. Computer Aided Chemical Engineering, 2015, , 2393-2398.	0.3	3
95	Experimental Studies and Model Based Optimisation of Microalgal Production of Fuels and Chemicals. Computer Aided Chemical Engineering, 2016, 38, 2145-2150.	0.3	2
96	Modelling of Starch Production by Microalgal Biomass under Multi-nutrient Limitation. Computer Aided Chemical Engineering, 2016, , 2133-2138.	0.3	1
97	An assessment of ionomic changes in Chlamydomonas reinhardtii during phosphorus deficiency and cadmium stress. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153, S187-S188.	0.8	0
98	Ion-coupled cation exchangers from Chlamydomonas reinhardtii with roles in nutrient stress homeostasis. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153, S192.	0.8	0
99	Characterisation of Metal Transport Proteins for providing metal stress tolerance in green microalgae. New Biotechnology, 2014, 31, S141.	2.4	0
100	Optimisation of microalgal starch formation for the biochemical production of biobutanol. Computer Aided Chemical Engineering, 2017, , 2899-2904.	0.3	0
101	Kinetic Modelling and Scaled-up Experimental Studies of Microalgal Fuels and Chemicals Production. Computer Aided Chemical Engineering, 2017, , 2833-2838.	0.3	0
102	Model-based Fed-batch Algal Cultivation Strategy for Enhanced Starch Production. Computer Aided Chemical Engineering, 2018, , 1595-1600.	0.3	0
103	A multiscale model approach for cell growth for lipids and pigments production by Haematococcus pluvialis under different environmental conditions Computer Aided Chemical Engineering, 2019, 46, 1573-1578.	0.3	0
104	Ca ²⁺ /H ⁺ exchange by acidic organelles regulates cell migration in vivo. Journal of Experimental Medicine, 2016, 213, 2134OIA28.	4.2	0
105	Mechanisms of detoxification of high manganese concentrations by the microalga Chlorella sorokiniana. Free Radical Biology and Medicine, 2021, 177, S102.	1.3	0