

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1051354/publications.pdf Version: 2024-02-01

VANC VI

#	Article	IF	CITATIONS
1	Advances on Bioactive Polysaccharides from Medicinal Plants. Critical Reviews in Food Science and Nutrition, 2016, 56, S60-S84.	10.3	364
2	Structural features and immunomodulatory activities of polysaccharides of longan pulp. Carbohydrate Polymers, 2012, 87, 636-643.	10.2	95
3	Dietary litchi pulp polysaccharides could enhance immunomodulatory and antioxidant effects in mice. International Journal of Biological Macromolecules, 2016, 92, 1067-1073.	7.5	79
4	Natural polysaccharides experience physiochemical and functional changes during preparation: A review. Carbohydrate Polymers, 2020, 234, 115896.	10.2	73
5	Comparison of Physicochemical Properties and Immunomodulatory Activity of Polysaccharides from Fresh and Dried Litchi Pulp. Molecules, 2014, 19, 3909-3925.	3.8	60
6	Longan pulp polysaccharides relieve intestinal injury in vivo and in vitro by promoting tight junction expression. Carbohydrate Polymers, 2020, 229, 115475.	10.2	58
7	Physicochemical Characteristics and Immunomodulatory Activities of Three Polysaccharide-Protein Complexes of Longan Pulp. Molecules, 2011, 16, 6148-6164.	3.8	56
8	Effects of alkali dissociation on the molecular conformation and immunomodulatory activity of longan pulp polysaccharide (LPI). Carbohydrate Polymers, 2012, 87, 1311-1317.	10.2	51
9	Activity diversity structure-activity relationship of polysaccharides from lotus root varieties. Carbohydrate Polymers, 2018, 190, 67-76.	10.2	51
10	In vitro digestion and human gut microbiota fermentation of longan pulp polysaccharides as affected by Lactobacillus fermentum fermentation. International Journal of Biological Macromolecules, 2020, 147, 363-368.	7.5	48
11	Chemical and rheological properties of polysaccharides from litchi pulp. International Journal of Biological Macromolecules, 2018, 112, 968-975.	7.5	44
12	Physicochemical and biological properties of longan pulp polysaccharides modified by Lactobacillus fermentum fermentation. International Journal of Biological Macromolecules, 2019, 125, 232-237.	7.5	41
13	Investigation of the Maillard Reaction between Polysaccharides and Proteins from Longan Pulp and the Improvement in Activities. Molecules, 2017, 22, 938.	3.8	40
14	Characterization and mesenteric lymph node cells-mediated immunomodulatory activity of litchi pulp polysaccharide fractions. Carbohydrate Polymers, 2016, 152, 496-503.	10.2	39
15	Effects of Drying Methods on Physicochemical and Immunomodulatory Properties of Polysaccharide-Protein Complexes from Litchi Pulp. Molecules, 2014, 19, 12760-12776.	3.8	36
16	Structural and biological properties of polysaccharides from lotus root. International Journal of Biological Macromolecules, 2019, 130, 454-461.	7.5	33
17	Solution Properties and in Vitro Anti-Tumor Activities of Polysaccharides from Longan Pulp. Molecules, 2013, 18, 11601-11613.	3.8	31
18	Phenolic Profiles and Antioxidant Activity of Lotus Root Varieties. Molecules, 2016, 21, 863.	3.8	31

Yang Yi

#	Article	IF	CITATIONS
19	Immunomodulatory Activity of Polysaccharide-Protein Complex of Longan (Dimocarpus longan Lour.) Pulp. Molecules, 2011, 16, 10324-10336.	3.8	29
20	Characterization of polysaccharide from longan pulp as the macrophage stimulator. RSC Advances, 2015, 5, 97163-97170.	3.6	29
21	Polysaccharides from Pyracantha fortuneana and its biological activity. International Journal of Biological Macromolecules, 2020, 150, 1162-1174.	7.5	21
22	Comprehensive characterization of lotus root polysaccharide-phenol complexes. Food Chemistry, 2022, 366, 130693.	8.2	20
23	The effects of different temperatures on the storage characteristics of lotus (Nelumbo nucifera G.) root. Food Chemistry, 2021, 348, 129109.	8.2	16
24	Fingerprint profiling of polysaccharides from different parts of lotus root varieties. RSC Advances, 2018, 8, 16574-16584.	3.6	15
25	Transcription Profiles Reveal the Regulatory Synthesis of Phenols during the Development of Lotus Rhizome (Nelumbo nucifera Gaertn). International Journal of Molecular Sciences, 2019, 20, 2735.	4.1	15
26	Microanalysis, Pharmacokinetics and Tissue Distribution of Polysaccharide-Protein Complexes from Longan Pulp in Mice. International Journal of Molecular Sciences, 2015, 16, 24403-24416.	4.1	13
27	Cryoconcentration procedure for aqueous extracts of maqui fruits prepared by centrifugation and filtration from fruits harvested in different years from the same localities. Journal of Berry Research, 2019, 9, 377-394.	1.4	13
28	Effects of a Lysine-Involved Maillard Reaction on the Structure and In Vitro Activities of Polysaccharides from Longan Pulp. Molecules, 2019, 24, 972.	3.8	13
29	Drosophila as an emerging model organism for studies of food-derived antioxidants. Food Research International, 2021, 143, 110307.	6.2	13
30	Acidâ€thermalâ€induced formation of rice bran protein nanoâ€particles: foaming properties and physicochemical characteristics. International Journal of Food Science and Technology, 2022, 57, 3624-3633.	2.7	10
31	Investigation on the quality diversity and quality-FTIR characteristic relationship of sunflower seed oils. RSC Advances, 2019, 9, 27347-27360.	3.6	8
32	Effect of ultraviolet treatment on shelf life of fresh lotus root. Journal of Food Biochemistry, 2020, 44, e13223.	2.9	4
33	Sustainable food smart manufacturing technology. Information Processing and Management, 2022, 59, 102754.	8.6	4
34	Melatonin maintains the storage quality of fresh-cut Chinese water chestnuts by regulating phenolic and reactive oxygen species metabolism. Food Quality and Safety, 2022, 6, .	1.8	4
35	Effects of storage condition on the physicochemical characteristics of sunflower seed oil. RSC Advances, 2019, 9, 42262-42271.	3.6	3
36	Insights from label free-based proteomic analysis into inhibitory effects ε-Poly-lysine against Vibrio parahaemolyticus. Microbial Pathogenesis, 2021, 160, 105169.	2.9	3

Yang Yi

#	Article	IF	CITATIONS
37	Molecular mechanism of the anti-gastric cancer activity of 1,2,3,6-tetra-O-galloyl-β-D-glucose isolated from Trapa bispinosa Roxb. shell in vitro. PLoS ONE, 2022, 17, e0269013.	2.5	2
38	The Quality Analysis and Deterioration Mechanism of Liquid Egg White during Storage. Applied Sciences (Switzerland), 2022, 12, 2500.	2.5	1