
David Parra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1051229/publications.pdf Version: 2024-02-01

ΠΛΥΙΟ ΡΛΟΟΛ

#	Article	IF	CITATIONS
1	Do I need to charge right now? Tailored choice architecture design can increase preferences for electric vehicle smart charging. Energy Policy, 2022, 162, 112818.	4.2	14
2	Integration of prosumer peer-to-peer trading decisions into energy community modelling. Nature Energy, 2022, 7, 74-82.	19.8	50
3	The demand-side resource opportunity for deep grid decarbonization. Joule, 2022, 6, 972-983.	11.7	13
4	What adds more flexibility? An energy system analysis of storage, demand-side response, heating electrification, and distribution reinforcement. Renewable and Sustainable Energy Reviews, 2022, 167, 112696.	8.2	23
5	Decarbonising heat with optimal PV and storage investments: A detailed sector coupling modelling framework with flexible heat pump operation. Applied Energy, 2021, 282, 116110.	5.1	36
6	Physical design, techno-economic analysis and optimization of distributed compressed air energy storage for renewable energy integration. Journal of Energy Storage, 2021, 35, 102268.	3.9	25
7	Spatial analysis of distribution grid capacity and costs to enable massive deployment of PV, electric mobility and electric heating. Applied Energy, 2021, 287, 116504.	5.1	71
8	Editorial: Advances in Power-to-X: Processes, Systems, and Deployment. Frontiers in Energy Research, 2021, 9, .	1.2	3
9	Decarbonizing heat with PV-coupled heat pumps supported by electricity and heat storage: Impacts and trade-offs for prosumers and the grid. Energy Conversion and Management, 2021, 240, 114220.	4.4	22
10	Peer-to-peer electricity trading as an enabler of increased PV and EV ownership. Energy Conversion and Management, 2021, 245, 114634.	4.4	37
11	Impact of local energy markets integration in power systems layer: A comprehensive review. Applied Energy, 2021, 301, 117434.	5.1	51
12	Does bulk electricity storage assist wind and solar in replacing dispatchable power production?. Energy Economics, 2020, 85, 104495.	5.6	11
13	Levelized cost of solar photovoltaics and wind supported by storage technologies to supply firm electricity. Journal of Energy Storage, 2020, 27, 101027.	3.9	41
14	Becoming prosumer: Revealing trading preferences and decision-making strategies in peer-to-peer energy communities. Energy Policy, 2020, 137, 111098.	4.2	117
15	How Does the Electricity Demand Profile Impact the Attractiveness of PV-Coupled Battery Systems Combining Applications?. Energies, 2020, 13, 4038.	1.6	11
16	Optimised allocation of PV and storage capacity among different consumer types and urban settings: A prospective analysis for Switzerland. Journal of Cleaner Production, 2020, 259, 120762.	4.6	13
17	Impact of prosumer battery operation on the cost of power supply. Journal of Energy Storage, 2020, 29, 101323.	3.9	7
18	Cost-effectiveness of large-scale deep energy retrofit packages for residential buildings under different economic assessment approaches. Energy and Buildings, 2020, 215, 109870.	3.1	51

David Parra

#	Article	IF	CITATIONS
19	Optimized PV-coupled battery systems for combining applications: Impact of battery technology and geography. Renewable and Sustainable Energy Reviews, 2019, 112, 978-990.	8.2	58
20	Disaggregation of energy storage operation by timescales. Journal of Energy Storage, 2019, 23, 480-494.	3.9	7
21	Additional Emissions and Cost from Storing Electricity in Stationary Battery Systems. Environmental Science & Technology, 2019, 53, 3379-3390.	4.6	58
22	The nature of combining energy storage applications for residential battery technology. Applied Energy, 2019, 239, 1343-1355.	5.1	38
23	Modelling the effects of low-cost large-scale energy storage in the UK electricity network. , 2019, , .		0
24	An assessment of the impacts of renewable and conventional electricity supply on the cost and value of power-to-gas. International Journal of Hydrogen Energy, 2019, 44, 9577-9593.	3.8	23
25	Analysis of space heating demand in the Swiss residential building stock: Element-based bottom-up model of archetype buildings. Energy and Buildings, 2019, 184, 300-322.	3.1	77
26	A review on the role, cost and value of hydrogen energy systems for deep decarbonisation. Renewable and Sustainable Energy Reviews, 2019, 101, 279-294.	8.2	378
27	Community energy storage: A smart choice for the smart grid?. Applied Energy, 2018, 212, 489-497.	5.1	162
28	Techno-economic analysis of battery storage and curtailment in a distribution grid with high PV penetration. Journal of Energy Storage, 2018, 17, 73-83.	3.9	57
29	Assessment of the current thermal performance level of the Swiss residential building stock: Statistical analysis of energy performance certificates. Energy and Buildings, 2018, 178, 360-378.	3.1	68
30	An interdisciplinary review of energy storage for communities: Challenges and perspectives. Renewable and Sustainable Energy Reviews, 2017, 79, 730-749.	8.2	209
31	Optimum community energy storage for renewable energy and demand load management. Applied Energy, 2017, 200, 358-369.	5.1	135
32	An integrated techno-economic and life cycle environmental assessment of power-to-gas systems. Applied Energy, 2017, 193, 440-454.	5.1	204
33	Techno-economic potential of large-scale energy retrofit in the Swiss residential building stock. Energy Procedia, 2017, 122, 121-126.	1.8	32
34	Techno-economic and environmental assessment of stationary electricity storage technologies for different time scales. Energy, 2017, 139, 1173-1187.	4.5	95
35	Optimizing PV and grid charging in combined applications to improve the profitability of residential batteries. Journal of Energy Storage, 2017, 13, 58-72.	3.9	74
36	Design, testing and evaluation of a community hydrogen storage system for end user applications. International Journal of Hydrogen Energy, 2016, 41, 5215-5229.	3.8	49

David Parra

#	Article	IF	CITATIONS
37	Optimum community energy storage system for demand load shifting. Applied Energy, 2016, 174, 130-143.	5.1	107
38	Techno-economic implications of the electrolyser technology and size for power-to-gas systems. International Journal of Hydrogen Energy, 2016, 41, 3748-3761.	3.8	144
39	Are batteries the optimum PV-coupled energy storage for dwellings? Techno-economic comparison with hot water tanks in the UK. Energy and Buildings, 2016, 116, 614-621.	3.1	34
40	Effect of tariffs on the performance and economic benefits of PV-coupled battery systems. Applied Energy, 2016, 164, 175-187.	5.1	107
41	Optimum community energy storage system for PV energy time-shift. Applied Energy, 2015, 137, 576-587.	5.1	148
42	The role of hydrogen in achieving the decarbonization targets for the UK domestic sector. International Journal of Hydrogen Energy, 2014, 39, 4158-4169.	3.8	36
43	Modeling of PV generation, battery and hydrogen storage to investigate the benefits of energy storage for single dwelling. Sustainable Cities and Society, 2014, 10, 1-10.	5.1	73
44	Solar space heating and cooling for Spanish housing: Potential energy savings and emissions reduction. Solar Energy, 2011, 85, 2622-2641.	2.9	35
45	Solar Space Heating System Using High Efficiency Flat Plate Collectors: Experimental Results. , 2010, , .		1