
Lars M Blank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10511365/publications.pdf Version: 2024-02-01

LADS M RIANK

#	Article	IF	CITATIONS
1	MEMOTE for standardized genome-scale metabolic model testing. Nature Biotechnology, 2020, 38, 272-276.	17.5	314
2	Microbial hyaluronic acid production. Applied Microbiology and Biotechnology, 2005, 66, 341-351.	3.6	305
3	Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biology, 2005, 6, R49.	9.6	274
4	Possibilities and limitations of biotechnological plastic degradation and recycling. Nature Catalysis, 2020, 3, 867-871.	34.4	233
5	Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Research, 2005, 15, 1421-1430.	5.5	208
6	Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microbial Cell Factories, 2011, 10, 80.	4.0	206
7	Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Research, 2005, 5, 545-558.	2.3	192
8	Chemical and biological single cell analysis. Current Opinion in Biotechnology, 2010, 21, 12-20.	6.6	173
9	Tn7-Based Device for Calibrated Heterologous Gene Expression in <i>Pseudomonas putida</i> . ACS Synthetic Biology, 2015, 4, 1341-1351.	3.8	169
10	Towards bio-upcycling of polyethylene terephthalate. Metabolic Engineering, 2021, 66, 167-178.	7.0	151
11	Metabolic response of <i>Pseudomonas putida</i> during redox biocatalysis in the presence of a second octanol phase. FEBS Journal, 2008, 275, 5173-5190.	4.7	135
12	Plastic waste as a novel substrate for industrial biotechnology. Microbial Biotechnology, 2015, 8, 900-903.	4.2	134
13	TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. Microbiology (United Kingdom), 2004, 150, 1085-1093.	1.8	130
14	Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization. Metabolic Engineering, 2018, 48, 197-207.	7.0	125
15	Metabolic and Transcriptional Response to Cofactor Perturbations in Escherichia coli. Journal of Biological Chemistry, 2010, 285, 17498-17506.	3.4	115
16	Oxygen- and Glucose-Dependent Regulation of Central Carbon Metabolism in Pichia anomala. Applied and Environmental Microbiology, 2004, 70, 5905-5911.	3.1	114
17	Response of Pseudomonas putida KT2440 to Increased NADH and ATP Demand. Applied and Environmental Microbiology, 2011, 77, 6597-6605.	3.1	110
18	<i>Ustilago maydis</i> produces itaconic acid via the unusual intermediate <i>trans</i> â€aconitate. Microbial Biotechnology, 2016, 9, 116-126.	4.2	107

#	Article	IF	CITATIONS
19	Redox Biocatalysis and Metabolism: Molecular Mechanisms and Metabolic Network Analysis. Antioxidants and Redox Signaling, 2010, 13, 349-394.	5.4	101
20	Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440. Frontiers in Microbiology, 2015, 6, 284.	3.5	100
21	Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Microbial Cell Factories, 2016, 15, 53.	4.0	98
22	Biodegradation and up-cycling of polyurethanes: Progress, challenges, and prospects. Biotechnology Advances, 2021, 48, 107730.	11.7	95
23	Carbon metabolism limits recombinant protein production in <i>Pichia pastoris</i> . Biotechnology and Bioengineering, 2011, 108, 1942-1953.	3.3	93
24	The Functional Structure of Central Carbon Metabolism in Pseudomonas putida KT2440. Applied and Environmental Microbiology, 2014, 80, 5292-5303.	3.1	93
25	Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae. Microbiology (United Kingdom), 2009, 155, 3827-3837.	1.8	91
26	Quantitative physiology of <i>Pichia pastoris</i> during glucoseâ€limited highâ€cell density fedâ€batch cultivation for recombinant protein production. Biotechnology and Bioengineering, 2010, 107, 357-368.	3.3	90
27	Metabolic engineering of Pseudomonas taiwanensis VLB120 with minimal genomic modifications for high-yield phenol production. Metabolic Engineering, 2018, 47, 121-133.	7.0	87
28	Laboratory evolution reveals the metabolic and regulatory basis of ethylene glycol metabolism by <i>Pseudomonas putida</i> KT2440. Environmental Microbiology, 2019, 21, 3669-3682.	3.8	85
29	Metabolic capacity estimation of <i>Escherichia coli</i> as a platform for redox biocatalysis: constraintâ€based modeling and experimental verification. Biotechnology and Bioengineering, 2008, 100, 1050-1065.	3.3	84
30	Comparison of Three Xylose Pathways in Pseudomonas putida KT2440 for the Synthesis of Valuable Products. Frontiers in Bioengineering and Biotechnology, 2019, 7, 480.	4.1	83
31	Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals. Fungal Biology and Biotechnology, 2014, 1, 2.	5.1	80
32	NADH Availability Limits Asymmetric Biocatalytic Epoxidation in a Growing Recombinant <i>Escherichia coli</i> Strain. Applied and Environmental Microbiology, 2008, 74, 1436-1446.	3.1	74
33	Mechanism-specific and whole-organism ecotoxicity of mono-rhamnolipids. Science of the Total Environment, 2016, 548-549, 155-163.	8.0	68
34	Grand Challenge Commentary: Chassis cells for industrial biochemical production. Nature Chemical Biology, 2010, 6, 875-877.	8.0	64
35	Enhanced malic acid production from glycerol with high-cell density Ustilago trichophora TZ1 cultivations. Biotechnology for Biofuels, 2016, 9, 135.	6.2	64
36	Defined Microbial Mixed Culture for Utilization of Polyurethane Monomers. ACS Sustainable Chemistry and Engineering, 2020, 8, 17466-17474.	6.7	60

Lars M Blank

#	Article	IF	CITATIONS
37	Evolution of the Hyaluronic Acid Synthesis (has) Operon in Streptococcus zooepidemicus and Other Pathogenic Streptococci. Journal of Molecular Evolution, 2008, 67, 13-22.	1.8	58
38	The Envirostat – a new bioreactor concept. Lab on A Chip, 2009, 9, 576-585.	6.0	58
39	Quantification of metabolic limitations during recombinant protein production in Escherichia coli. Journal of Biotechnology, 2011, 155, 178-184.	3.8	58
40	Genetic and biochemical insights into the itaconate pathway of Ustilago maydis enable enhanced production. Metabolic Engineering, 2016, 38, 427-435.	7.0	58
41	Efficient malic acid production from glycerol with Ustilago trichophora TZ1. Biotechnology for Biofuels, 2016, 9, 67.	6.2	58
42	Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa. Applied and Environmental Microbiology, 2016, 82, 5026-5038.	3.1	57
43	Integrated strain- and process design enable production of 220ÂgÂLâ^'1 itaconic acid with Ustilago maydis. Biotechnology for Biofuels, 2019, 12, 263.	6.2	57
44	Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using Pseudomonas putida. Frontiers in Bioengineering and Biotechnology, 2020, 8, 976.	4.1	56
45	Stable production of hyaluronic acid inStreptococcus zooepidemicus chemostats operated at high dilution rate. Biotechnology and Bioengineering, 2005, 90, 685-693.	3.3	55
46	<scp>D</scp> â€Xylose assimilation via the <scp>W</scp> eimberg pathway by solventâ€ŧolerant <scp><i>P</i></scp> <i>seudomonas taiwanensis</i> â€ <scp>VLB</scp> 120. Environmental Microbiology, 2015, 17, 156-170.	3.8	55
47	The metabolic potential of plastics as biotechnological carbon sources – Review and targets for the future. Metabolic Engineering, 2022, 71, 77-98.	7.0	55
48	Ethanol reduces mitochondrial membrane integrity and thereby impacts carbon metabolism of Saccharomyces cerevisiae. FEMS Yeast Research, 2012, 12, 675-684.	2.3	53
49	Metabolic engineering of Ustilago trichophora TZ1 for improved malic acid production. Metabolic Engineering Communications, 2017, 4, 12-21.	3.6	53
50	Efficient itaconic acid production from glycerol with Ustilago vetiveriae TZ1. Biotechnology for Biofuels, 2017, 10, 131.	6.2	53
51	From beech wood to itaconic acid: case study on biorefinery process integration. Biotechnology for Biofuels, 2018, 11, 279.	6.2	52
52	Fatty Acid and Alcohol Metabolism in Pseudomonas putida: Functional Analysis Using Random Barcode Transposon Sequencing. Applied and Environmental Microbiology, 2020, 86, .	3.1	52
53	Systems biotechnology – Rational wholeâ€cell biocatalyst and bioprocess design. Engineering in Life Sciences, 2010, 10, 384-397.	3.6	51
54	Complete genome sequence of Pseudomonas sp. strain VLB120 a solvent tolerant, styrene degrading bacterium, isolated from forest soil. Journal of Biotechnology, 2013, 168, 729-730.	3.8	51

#	Article	IF	CITATIONS
55	Metabolic Engineering of Pseudomonas putida KT2440 to Produce Anthranilate from Glucose. Frontiers in Microbiology, 2015, 6, 1310.	3.5	51
56	Engineering the morphology and metabolism of pH tolerant Ustilago cynodontis for efficient itaconic acid production. Metabolic Engineering, 2019, 54, 293-300.	7.0	47
57	High performance liquid chromatography-charged aerosol detection applying an inverse gradient for quantification of rhamnolipid biosurfactants. Journal of Chromatography A, 2016, 1455, 125-132.	3.7	45
58	Activating Intrinsic Carbohydrate-Active Enzymes of the Smut Fungus Ustilago maydis for the Degradation of Plant Cell Wall Components. Applied and Environmental Microbiology, 2016, 82, 5174-5185.	3.1	45
59	Electrochemical conversion of a bio-derivable hydroxy acid to a drop-in oxygenate diesel fuel. Energy and Environmental Science, 2019, 12, 2406-2411.	30.8	45
60	Consolidated bioprocessing of cellulose to itaconic acid by a co-culture of Trichoderma reesei and Ustilago maydis. Biotechnology for Biofuels, 2020, 13, 207.	6.2	45
61	High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions. Applied Microbiology and Biotechnology, 2014, 98, 6085-6094.	3.6	43
62	Hemin Reconstitutes Proton Extrusion in an H + -ATPase-Negative Mutant of Lactococcus lactis. Journal of Bacteriology, 2001, 183, 6707-6709.	2.2	42
63	The glycerophospholipid inventory of <i>Pseudomonas putida</i> is conserved between strains and enables growth conditionâ€related alterations. Microbial Biotechnology, 2012, 5, 45-58.	4.2	42
64	Picoliter nDEP traps enable time-resolved contactless single bacterial cell analysis in controlled microenvironments. Lab on A Chip, 2013, 13, 397-408.	6.0	42
65	Unraveling 1,4-Butanediol Metabolism in Pseudomonas putida KT2440. Frontiers in Microbiology, 2020, 11, 382.	3.5	42
66	Fermentation and purification strategies for the production of betulinic acid and its lupaneâ€ŧype precursors in <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2017, 114, 2528-2538.	3.3	41
67	A Physiologically Based Pharmacokinetic Model of Isoniazid and Its Application in Individualizing Tuberculosis Chemotherapy. Antimicrobial Agents and Chemotherapy, 2016, 60, 6134-6145.	3.2	40
68	Tailor-made poly-Î ³ -glutamic acid production. Metabolic Engineering, 2019, 55, 239-248.	7.0	38
69	Dynamics of benzoate metabolism in Pseudomonas putida KT2440. Metabolic Engineering Communications, 2016, 3, 97-110.	3.6	37
70	Exploiting the Natural Diversity of RhlA Acyltransferases for the Synthesis of the Rhamnolipid Precursor 3-(3-Hydroxyalkanoyloxy)Alkanoic Acid. Applied and Environmental Microbiology, 2020, 86, .	3.1	37
71	Boosting Heterologous Phenazine Production in Pseudomonas putida KT2440 Through the Exploration of the Natural Sequence Space. Frontiers in Microbiology, 2019, 10, 1990.	3.5	36
72	Simple enzymatic procedure for <scp>l</scp> â€carnosine synthesis: wholeâ€cell biocatalysis and efficient biocatalyst recycling. Microbial Biotechnology, 2010, 3, 74-83.	4.2	34

#	Article	IF	CITATIONS
73	The cell and P: from cellular function to biotechnological application. Current Opinion in Biotechnology, 2012, 23, 846-851.	6.6	34
74	Comprehensive Real-Time Analysis of the Yeast Volatilome. Scientific Reports, 2017, 7, 14236.	3.3	34
75	Proline Availability Regulates Proline-4-Hydroxylase Synthesis and Substrate Uptake in Proline-Hydroxylating Recombinant Escherichia coli. Applied and Environmental Microbiology, 2013, 79, 3091-3100.	3.1	33
76	MIXed plastics biodegradation and UPcycling using microbial communities: EU Horizon 2020 project MIX-UP started January 2020. Environmental Sciences Europe, 2021, 33, 99.	5.5	33
77	Engineering yield and rate of reductive biotransformation in Escherichia coli by partial cyclization of the pentose phosphate pathway and PTS-independent glucose transport. Applied Microbiology and Biotechnology, 2012, 93, 1459-1467.	3.6	32
78	A breath of information: the volatilome. Current Genetics, 2018, 64, 959-964.	1.7	32
79	An <i>Ustilago maydis</i> chassis for itaconic acid production without byâ€products. Microbial Biotechnology, 2020, 13, 350-362.	4.2	32
80	Identification of an endo-1,4-beta-xylanase of Ustilago maydis. BMC Biotechnology, 2013, 13, 59.	3.3	31
81	CO2 to succinic acid – Estimating the potential of biocatalytic routes. Metabolic Engineering Communications, 2018, 7, e00075.	3.6	31
82	High-Yield Production of 4-Hydroxybenzoate From Glucose or Glycerol by an Engineered Pseudomonas taiwanensis VLB120. Frontiers in Bioengineering and Biotechnology, 2019, 7, 130.	4.1	31
83	Metabolic flux distributions: genetic information, computational predictions, and experimental validation. Applied Microbiology and Biotechnology, 2010, 86, 1243-1255.	3.6	29
84	Discovery and Evaluation of Biosynthetic Pathways for the Production of Five Methyl Ethyl Ketone Precursors. ACS Synthetic Biology, 2018, 7, 1858-1873.	3.8	29
85	Flux-P: Automating Metabolic Flux Analysis. Metabolites, 2012, 2, 872-890.	2.9	28
86	Integration of genome-scale metabolic networks into whole-body PBPK models shows phenotype-specific cases of drug-induced metabolic perturbation. Npj Systems Biology and Applications, 2018, 4, 10.	3.0	28
87	Streamlined <i>Pseudomonas taiwanensis</i> VLB120 Chassis Strains with Improved Bioprocess Features. ACS Synthetic Biology, 2019, 8, 2036-2050.	3.8	28
88	The interplay between transport and metabolism in fungal itaconic acid production. Fungal Genetics and Biology, 2019, 125, 45-52.	2.1	28
89	Increased TCA cycle activity and reduced oxygen consumption during cytochrome P450-dependent biotransformation in fission yeast. Yeast, 2006, 23, 779-794.	1.7	27
90	Analysis of carbon and nitrogen co-metabolism in yeast by ultrahigh-resolution mass spectrometry applying 13C- and 15N-labeled substrates simultaneously. Analytical and Bioanalytical Chemistry, 2012, 403, 2291-2305.	3.7	27

#	Article	IF	CITATIONS
91	Metabolic response of <i>Pseudomonas putida</i> to increased NADH regeneration rates. Engineering in Life Sciences, 2017, 17, 47-57.	3.6	27
92	Killing Two Birds With One Stone – Strain Engineering Facilitates the Development of a Unique Rhamnolipid Production Process. Frontiers in Bioengineering and Biotechnology, 2020, 8, 899.	4.1	27
93	Engineering adipic acid metabolism in Pseudomonas putida. Metabolic Engineering, 2021, 67, 29-40.	7.0	27
94	Single cell analysis reveals unexpected growth phenotype of <i>S. cerevisiae</i> . Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 130-139.	1.5	25
95	Metabolic flux analysis of a phenol producing mutant of Pseudomonas putida S12: Verification and complementation of hypotheses derived from transcriptomics. Journal of Biotechnology, 2009, 143, 124-129.	3.8	25
96	Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands. Journal of Biotechnology, 2013, 163, 194-203.	3.8	25
97	A Comparison of the Microbial Production and Combustion Characteristics of Three Alcohol Biofuels: Ethanol, 1-Butanol, and 1-Octanol. Frontiers in Bioengineering and Biotechnology, 2015, 3, 112.	4.1	25
98	Process engineering of pH tolerant Ustilago cynodontis for efficient itaconic acid production. Microbial Cell Factories, 2019, 18, 213.	4.0	25
99	Selection of a recyclable <i>in situ</i> liquid–liquid extraction solvent for foam-free synthesis of rhamnolipids in a two-phase fermentation. Green Chemistry, 2020, 22, 8495-8510.	9.0	25
100	Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity. PLoS ONE, 2016, 11, e0163265.	2.5	25
101	Integrated process development of a reactive extraction concept for itaconic acid and application to a real fermentation broth. Engineering in Life Sciences, 2017, 17, 809-816.	3.6	24
102	Investigating metabolic interactions in a microbial co-culture through integrated modelling and experiments. Computational and Structural Biotechnology Journal, 2020, 18, 1249-1258.	4.1	24
103	Promoters from the itaconate cluster of Ustilago maydis are induced by nitrogen depletion. Fungal Biology and Biotechnology, 2017, 4, 11.	5.1	23
104	A model-based assay design to reproduce in vivo patterns of acute drug-induced toxicity. Archives of Toxicology, 2018, 92, 553-555.	4.2	23
105	Rational Engineering of Phenylalanine Accumulation in Pseudomonas taiwanensis to Enable High-Yield Production of Trans-Cinnamate. Frontiers in Bioengineering and Biotechnology, 2019, 7, 312.	4.1	23
106	Hypothesis-driven omics integration. Nature Chemical Biology, 2010, 6, 485-487.	8.0	22
107	Genetic Cell-Surface Modification for Optimized Foam Fractionation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 572892.	4.1	22
108	Towards real time analysis of protein secretion from single cells. Lab on A Chip, 2009, 9, 3047.	6.0	21

Lars M Blank

#	Article	IF	CITATIONS
109	Interaction of rhamnolipids with model biomembranes of varying complexity. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183431.	2.6	21
110	Comparison of Isomerase and Weimberg Pathway for Î ³ -PGA Production From Xylose by Engineered Bacillus subtilis. Frontiers in Bioengineering and Biotechnology, 2019, 7, 476.	4.1	21
111	A Straightforward Assay for Screening and Quantification of Biosurfactants in Microbial Culture Supernatants. Frontiers in Bioengineering and Biotechnology, 2020, 8, 958.	4.1	20
112	Uncoupling Foam Fractionation and Foam Adsorption for Enhanced Biosurfactant Synthesis and Recovery. Microorganisms, 2020, 8, 2029.	3.6	20
113	Adaptive laboratory evolution of Pseudomonas putida and Corynebacterium glutamicum to enhance anthranilate tolerance. Microbiology (United Kingdom), 2020, 166, 1025-1037.	1.8	20
114	Rhamnolipid biosurfactant analysis using online turbulent flow chromatography-liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2016, 1465, 90-97.	3.7	19
115	Targeting 16S rDNA for Stable Recombinant Gene Expression in <i>Pseudomonas</i> . ACS Synthetic Biology, 2019, 8, 1901-1912.	3.8	19
116	Integration of biocatalyst and process engineering for sustainable and efficient <i>n</i> â€butanol production. Engineering in Life Sciences, 2015, 15, 4-19.	3.6	18
117	A blueprint of the amino acid biosynthesis network of hemiascomycetes. FEMS Yeast Research, 2014, 14, n/a.	2.3	17
118	Draft Genome Sequence of <i>Ustilago trichophora</i> RK089, a Promising Malic Acid Producer. Genome Announcements, 2016, 4, .	0.8	17
119	Pseudomonas mRNA 2.0: Boosting Gene Expression Through Enhanced mRNA Stability and Translational Efficiency. Frontiers in Bioengineering and Biotechnology, 2019, 7, 458.	4.1	17
120	Single Cell Analytics: An Overview. Advances in Biochemical Engineering/Biotechnology, 2010, 124, 99-122.	1.1	16
121	Critical Factors for Microbial Contamination of Domestic Heating Oil. Energy & Fuels, 2015, 29, 6394-6403.	5.1	16
122	Elevated temperatures do not trigger a conserved metabolic network response among thermotolerant yeasts. BMC Microbiology, 2019, 19, 100.	3.3	16
123	Draft Genome Sequences of Itaconate-Producing <i>Ustilaginaceae</i> . Genome Announcements, 2016, 4, .	0.8	15
124	High titer methyl ketone production with tailored Pseudomonas taiwanensis VLB120. Metabolic Engineering, 2020, 62, 84-94.	7.0	15
125	Coupling an Electroactive Pseudomonas putida KT2440 with Bioelectrochemical Rhamnolipid Production. Microorganisms, 2020, 8, 1959.	3.6	15
126	Exploration and Exploitation of the Yeast Volatilome. Current Metabolomics, 2017, 5, .	0.5	15

#	Article	IF	CITATIONS
127	Improved sake metabolic profile during fermentation due to increased mitochondrial pyruvate dissimilation. FEMS Yeast Research, 2014, 14, 249-260.	2.3	14
128	Evolutionary freedom in the regulation of the conserved itaconate cluster by Ria1 in related Ustilaginaceae. Fungal Biology and Biotechnology, 2018, 5, 14.	5.1	14
129	Characterization of Context-Dependent Effects on Synthetic Promoters. Frontiers in Bioengineering and Biotechnology, 2020, 8, 551.	4.1	14
130	Brewers' spent grain as carbon source for itaconate production with engineered Ustilago maydis. Bioresource Technology, 2021, 336, 125262.	9.6	14
131	Ustilaginaceae Biocatalyst for Co-Metabolism of CO2-Derived Substrates toward Carbon-Neutral Itaconate Production. Journal of Fungi (Basel, Switzerland), 2021, 7, 98.	3.5	14
132	From measurement to implementation of metabolic fluxes. Current Opinion in Biotechnology, 2013, 24, 13-21.	6.6	13
133	Multi-Capillary Column-Ion Mobility Spectrometry of Volatile Metabolites Emitted by Saccharomyces Cerevisiae. Metabolites, 2014, 4, 751-774.	2.9	13
134	Online in vivo monitoring of cytosolic NAD redox dynamics in Ustilago maydis. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 1015-1024.	1.0	13
135	Genetic Optimization Algorithm for Metabolic Engineering Revisited. Metabolites, 2018, 8, 33.	2.9	13
136	Identification of Key Metabolites in Poly-γ-Glutamic Acid Production by Tuning γ-PGA Synthetase Expression. Frontiers in Bioengineering and Biotechnology, 2020, 8, 38.	4.1	13
137	Regulation of solvent tolerance inPseudomonas putidaS12 mediated by mobile elements. Microbial Biotechnology, 2017, 10, 1558-1568.	4.2	12
138	A comprehensive evaluation of constraining amino acid biosynthesis in compartmented models for metabolic flux analysis. Metabolic Engineering Communications, 2017, 5, 34-44.	3.6	12
139	Improved microscale cultivation of Pichia pastoris for clonal screening. Fungal Biology and Biotechnology, 2018, 5, 8.	5.1	12
140	GC-MS-Based Metabolomics for the Smut Fungus Ustilago maydis: A Comprehensive Method Optimization to Quantify Intracellular Metabolites. Frontiers in Molecular Biosciences, 2020, 7, 211.	3.5	12
141	<i>Pseudomonas putida</i> KT2440 endures temporary oxygen limitations. Biotechnology and Bioengineering, 2021, 118, 4735-4750.	3.3	12
142	A minimal growth medium for the basidiomycete Pleurotus sapidus for metabolic flux analysis. Fungal Biology and Biotechnology, 2014, 1, 9.	5.1	11
143	Whole-Cell Biocatalytic Production of 2,5-Furandicarboxylic Acid. Microbiology Monographs, 2015, , 207-223.	0.6	11
144	Evaluation of pyruvate decarboxylaseâ€negative <i>Saccharomyces cerevisiae</i> strains for the production of succinic acid. Engineering in Life Sciences, 2019, 19, 711-720.	3.6	11

#	Article	IF	CITATIONS
145	Exploiting the diversity of streptococcal hyaluronan synthases for the production of molecular weight–tailored hyaluronan. Applied Microbiology and Biotechnology, 2019, 103, 7567-7581.	3.6	11
146	Microfluidic Irreversible Electroporation—A Versatile Tool to Extract Intracellular Contents of Bacteria and Yeast. Metabolites, 2019, 9, 211.	2.9	11
147	Seventeen Ustilaginaceae High-Quality Genome Sequences Allow Phylogenomic Analysis and Provide Insights into Secondary Metabolite Synthesis. Journal of Fungi (Basel, Switzerland), 2022, 8, 269.	3.5	11
148	Miniaturized octupole cytometry for cell type independent trapping and analysis. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	10
149	A Physiology-Based Model of Human Bile Acid Metabolism for Predicting Bile Acid Tissue Levels After Drug Administration in Healthy Subjects and BRIC Type 2 Patients. Frontiers in Physiology, 2019, 10, 1192.	2.8	10
150	Benzoate Synthesis from Glucose or Glycerol Using Engineered <i>Pseudomonas taiwanensis</i> . Biotechnology Journal, 2020, 15, e2000211.	3.5	10
151	Defined inoculum for the investigation of microbial contaminations of liquid fuels. International Biodeterioration and Biodegradation, 2018, 132, 84-93.	3.9	9
152	A Combined Bio-Chemical Synthesis Route for 1-Octene Sheds Light on Rhamnolipid Structure. Catalysts, 2020, 10, 874.	3.5	9
153	Upcycling of hydrolyzed PET by microbial conversion to a fatty acid derivative. Methods in Enzymology, 2021, 648, 391-421.	1.0	9
154	Pressure-resistant and reversible on-tube-sealing for microfluidics. Microfluidics and Nanofluidics, 2011, 10, 679-684.	2.2	8
155	GC-MS-Based Determination of Mass Isotopomer Distributions for 13C-Based Metabolic Flux Analysis. Springer Protocols, 2015, , 223-243.	0.3	8
156	Physiologic and metabolic characterization of Saccharomyces cerevisiae reveals limitations in the synthesis of the triterpene squalene. FEMS Yeast Research, 2018, 18, .	2.3	8
157	Comprehensive liamocin biosurfactants analysis by reversed phase liquid chromatography coupled to mass spectrometric and charged-aerosol detection. Journal of Chromatography A, 2020, 1627, 461404.	3.7	8
158	Nitrogen Metabolism in Pseudomonas putida: Functional Analysis Using Random Barcode Transposon Sequencing. Applied and Environmental Microbiology, 2022, 88, e0243021.	3.1	8
159	Genome-scale model reconstruction of the methylotrophic yeast Ogataea polymorpha. BMC Biotechnology, 2021, 21, 23.	3.3	7
160	Bio-energy conversion with carbon capture and utilization (BECCU): integrated biomass fermentation and chemo-catalytic CO2 hydrogenation for bioethanol and formic acid co-production. Green Chemistry, 2021, 23, 9860-9864.	9.0	7
161	Let's talk about flux or the importance of (intracellular) reaction rates. Microbial Biotechnology, 2017, 10, 28-30.	4.2	6
162	Double bond localization in unsaturated rhamnolipid precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids by liquid chromatography–mass spectrometry applying online Paternò–Büchi reaction. Analytical and Bioanalytical Chemistry, 2020, 412, 5601-5613.	3.7	6

#	Article	IF	CITATIONS
163	Ustilago maydis Metabolic Characterization and Growth Quantification with a Genome-Scale Metabolic Model. Journal of Fungi (Basel, Switzerland), 2022, 8, 524.	3.5	6
164	Impact of the number of rhamnose moieties of rhamnolipids on the structure, lateral organization and morphology of model biomembranes. Soft Matter, 2021, 17, 3191-3206.	2.7	5
165	A plea for the integration of Green Toxicology in sustainable bioeconomy strategies – Biosurfactants and microgel-based pesticide release systems as examples. Journal of Hazardous Materials, 2022, 426, 127800.	12.4	5
166	Systems Analysis of NADH Dehydrogenase Mutants Reveals Flexibility and Limits of Pseudomonas taiwanensis VLB120's Metabolism. Applied and Environmental Microbiology, 2020, 86, .	3.1	4
167	Successful Downsizing for High-Throughput 13C-MFA Applications. Methods in Molecular Biology, 2014, 1191, 127-142.	0.9	4
168	Insight to Gene Expression From Promoter Libraries With the Machine Learning Workflow Exp2Ipynb. Frontiers in Bioinformatics, 2021, 1, .	2.1	4
169	Assessment of microbial activity by CO ₂ production during heating oil storage. Engineering in Life Sciences, 2022, 22, 508-518.	3.6	4
170	Mix and Match: Promoters and Terminators for Tuning Gene Expression in the Methylotrophic Yeast Ogataea polymorpha. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	4.1	4
171	Mass spectrometric characterization of siderophores produced by Pseudomonas taiwanensis VLB120 assisted by stable isotope labeling of nitrogen source. BioMetals, 2018, 31, 785-795.	4.1	3
172	A Modelâ€Based Workflow to Benchmark the Clinical Cholestasis Risk of Drugs. Clinical Pharmacology and Therapeutics, 2021, 110, 1293-1301.	4.7	3
173	Multi-capillary Column Ion Mobility Spectrometry of Volatile Metabolites for Phenotyping of Microorganisms. Methods in Molecular Biology, 2018, 1671, 229-258.	0.9	2
174	Microbial challenges for domestic heating oil storage tanks. Engineering in Life Sciences, 2016, 16, 474-482.	3.6	1
175	A rapid method to estimate NADH regeneration rates in living cells. Journal of Microbiological Methods, 2016, 130, 92-94.	1.6	1
176	Customized Woven Carbon Fiber Electrodes for Bioelectrochemical Systems—A Study of Structural Parameters. Frontiers in Chemical Engineering, 2022, 4, .	2.7	1
177	Malatproduktion aus Rohglycerin mit Ustilago. BioSpektrum, 2018, 24, 218-220.	0.0	0