## **Chinmoy Sarkar**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10511299/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | N-acetyl-L-leucine: a promising treatment option for traumatic brain injury. Neural Regeneration Research, 2022, 17, 1957.                                                                                                            | 3.0  | 4         |
| 2  | N-Acetyl-l-leucine improves functional recovery and attenuates cortical cell death and neuroinflammation after traumatic brain injury in mice. Scientific Reports, 2021, 11, 9249.                                                    | 3.3  | 20        |
| 3  | Structure-specific, accurate quantitation of plasmalogen glycerophosphoethanolamine. Analytica<br>Chimica Acta, 2021, 1186, 339088.                                                                                                   | 5.4  | 8         |
| 4  | PLA2G4A/cPLA2-mediated lysosomal membrane damage leads to inhibition of autophagy and neurodegeneration after brain trauma. Autophagy, 2020, 16, 466-485.                                                                             | 9.1  | 95        |
| 5  | The <i>PARK10</i> gene <i>USP24</i> is a negative regulator of autophagy and ULK1 protein stability.<br>Autophagy, 2020, 16, 140-153.                                                                                                 | 9.1  | 30        |
| 6  | Cln1 â€mutations suppress Rab7â€RILP interaction and impair autophagy contributing to neuropathology in<br>a mouse model of infantile neuronal ceroid lipofuscinosis. Journal of Inherited Metabolic Disease,<br>2020, 43, 1082-1101. | 3.6  | 16        |
| 7  | cPLA2 activation contributes to lysosomal defects leading to impairment of autophagy after spinal cord injury. Cell Death and Disease, 2019, 10, 531.                                                                                 | 6.3  | 35        |
| 8  | Detection and Structural Characterization of Ether Glycerophosphoethanolamine from Cortical<br>Lysosomes Following Traumatic Brain Injury Using UPLCâ€HDMS <sup>E</sup> . Proteomics, 2019, 19,<br>e1800297.                          | 2.2  | 9         |
| 9  | Lysosomal damage after spinal cord injury causes accumulation of RIPK1 and RIPK3 proteins and potentiation of necroptosis. Cell Death and Disease, 2018, 9, 476.                                                                      | 6.3  | 103       |
| 10 | <i>Cln1</i> gene disruption in mice reveals a common pathogenic link between two of the most lethal<br>childhood neurodegenerative lysosomal storage disorders. Human Molecular Genetics, 2015, 24,<br>5416-5432.                     | 2.9  | 25        |
| 11 | Altered TFEB-mediated lysosomal biogenesis in Gaucher disease iPSC-derived neuronal cells. Human<br>Molecular Genetics, 2015, 24, 5775-5788.                                                                                          | 2.9  | 102       |
| 12 | Function and Mechanisms of Autophagy in Brain and Spinal Cord Trauma. Antioxidants and Redox<br>Signaling, 2015, 23, 565-577.                                                                                                         | 5.4  | 164       |
| 13 | Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury.<br>Autophagy, 2014, 10, 2208-2222.                                                                                                       | 9.1  | 256       |
| 14 | Neuroprotection and lifespan extension in Ppt1â^'/â^' mice by NtBuHA: therapeutic implications for INCL.<br>Nature Neuroscience, 2013, 16, 1608-1617.                                                                                 | 14.8 | 61        |
| 15 | The blood-brain barrier is disrupted in a mouse model of infantile neuronal ceroid lipofuscinosis:<br>amelioration by resveratrol. Human Molecular Genetics, 2012, 21, 2233-2244.                                                     | 2.9  | 52        |
| 16 | Impaired lysosomal maturation of proâ€cathepsin D to active cathepsin D in a childhood<br>neurodegenerative lysosomal storage disease. FASEB Journal, 2012, 26, 956.6.                                                                | 0.5  | 0         |
| 17 | Stop codon read-through with PTC124 induces palmitoyl-protein thioesterase-1 activity, reduces thioester load and suppresses apoptosis in cultured cells from INCL patients. Molecular Genetics and Metabolism, 2011, 104, 338-345.   | 1.1  | 56        |
| 18 | RAGE signaling contributes to neuroinflammation in infantile neuronal ceroid lipofuscinosis. FEBS Letters, 2008, 582, 3823-3831.                                                                                                      | 2.8  | 25        |

CHINMOY SARKAR

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Palmitoyl protein thioesterase-1 deficiency impairs synaptic vesicle recycling at nerve terminals, contributing to neuropathology in humans and mice. Journal of Clinical Investigation, 2008, 118, 3075-3086. | 8.2 | 109       |
| 20 | Activation of the Mitf promoter by lipid-stimulated activation of p38-stress signalling to CREB.<br>Pigment Cell & Melanoma Research, 2006, 19, 595-605.                                                       | 3.6 | 147       |
| 21 | Transcriptional activation of tyrosinase gene by human placental sphingolipid. Glycoconjugate<br>Journal, 2006, 23, 259-268.                                                                                   | 2.7 | 10        |
| 22 | Human placental protein/peptides stimulate melanin synthesis by enhancing tyrosinase gene<br>expression. Molecular and Cellular Biochemistry, 2006, 285, 133-142.                                              | 3.1 | 11        |
| 23 | Human placental lipid induces melanogenesis by increasing the expression of tyrosinase and its related proteins in vitro. Pigment Cell & Melanoma Research, 2005, 18, 25-33.                                   | 3.6 | 59        |
| 24 | Human placental lipid induces melanogenesis through p38 MAPK in B16F10 mouse melanoma. Pigment<br>Cell & Melanoma Research, 2005, 18, 113-121.                                                                 | 3.6 | 69        |