Sorina Dinescu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1051099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The gene regulation knowledge commons: the action area of GREEKC. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2022, 1865, 194768.	1.9	3
2	Graphene–Oxide Porous Biopolymer Hybrids Enhance In Vitro Osteogenic Differentiation and Promote Ectopic Osteogenesis In Vivo. International Journal of Molecular Sciences, 2022, 23, 491.	4.1	9
3	Silk ProteinsEnriched Nanocomposite Hydrogels Based on Modified MMT Clay and Poly(2-hydroxyethyl) Tj ETQq1 Tissue Engineering. Nanomaterials, 2022, 12, 503.	1 0.78431 4.1	l4 rgBT /O∨ 8
4	3D Printable Composite Biomaterials Based on GelMA and Hydroxyapatite Powders Doped with Cerium Ions for Bone Tissue Regeneration. International Journal of Molecular Sciences, 2022, 23, 1841.	4.1	24
5	Nanocellulose-enriched hydrocolloid-based hydrogels designed using a Ca2+ free strategy based on citric acid. Materials and Design, 2021, 197, 109200.	7.0	30
6	A novel experimental approach to evaluate guided bone regeneration (GBR) in the rat femur using a 3D-printed CAD/CAM zirconia space-maintaining barrier. Journal of Advanced Research, 2021, 28, 221-229.	9.5	6
7	Complexation with Random Methyl-Î ² -Cyclodextrin and (2-Hidroxypropyl)-Î ² -Cyclodextrin Enhances In Vivo Anti-Fibrotic and Anti-Inflammatory Effects of Chrysin via the Inhibition of NF-ήB and TGF-Î ² 1/Smad Signaling Pathways and Modulation of Hepatic Pro/Anti-Fibrotic miRNA. International Journal of Molecular Sciences. 2021. 22. 1869.	4.1	6
8	Fabrication and properties of alginate-hydroxyapatite biocomposites as efficient biomaterials for bone regeneration. European Polymer Journal, 2021, 151, 110444.	5.4	15
9	5-Aminosalicylic Acid Loaded Chitosan-Carrageenan Hydrogel Beads with Potential Application for the Treatment of Inflammatory Bowel Disease. Polymers, 2021, 13, 2463.	4.5	12
10	Cellulose Nanofiber-Based Hydrogels Embedding 5-FU Promote Pyroptosis Activation in Breast Cancer Cells and Support Human Adipose-Derived Stem Cell Proliferation, Opening New Perspectives for Breast Tissue Engineering. Pharmaceutics, 2021, 13, 1189.	4.5	15
11	3D Bioprinting of Biosynthetic Nanocellulose-Filled GelMA Inks Highly Reliable for Soft Tissue-Oriented Constructs. Materials, 2021, 14, 4891.	2.9	11
12	Epitranscriptomic signatures in stem cell differentiation to the neuronal lineage. RNA Biology, 2021, 18, 51-60.	3.1	3
13	Electrospinning Fabrication and Cytocompatibility Investigation of Nanodiamond Particles-Gelatin Fibrous Tubular Scaffolds for Nerve Regeneration. Polymers, 2021, 13, 407.	4.5	7
14	Regenerative Potential of Mesenchymal Stem Cells' (MSCs) Secretome for Liver Fibrosis Therapies. International Journal of Molecular Sciences, 2021, 22, 13292.	4.1	16
15	<i>In Vitro</i> Effects of Cetylated Fatty Acids Mixture from Celadrin on Chondrogenesis and Inflammation with Impact on Osteoarthritis. Cartilage, 2020, 11, 88-97.	2.7	7
16	Ceramics based on calcium phosphates substituted with magnesium ions for bone regeneration. International Journal of Applied Ceramic Technology, 2020, 17, 342-353.	2.1	13
17	Inflammation and Inflammasomes: Pros and Cons in Tumorigenesis. Journal of Immunology Research, 2020, 2020, 1-15.	2.2	16
18	Exosomes as Part of the Human Adipose-Derived Stem Cells Secretome- Opening New Perspectives for Cell-Free Regenerative Applications. Advances in Experimental Medicine and Biology, 2020, 1312, 139-163.	1.6	12

SORINA DINESCU

#	Article	IF	CITATIONS
19	Interplay between Cellular and Molecular Mechanisms Underlying Inflammatory Bowel Diseases Development—A Focus on Ulcerative Colitis. Cells, 2020, 9, 1647.	4.1	27
20	Deciphering the Molecular Landscape of Cutaneous Squamous Cell Carcinoma for Better Diagnosis and Treatment. Journal of Clinical Medicine, 2020, 9, 2228.	2.4	22
21	The Non-Coding Landscape of Cutaneous Malignant Melanoma: A Possible Route to Efficient Targeted Therapy. Cancers, 2020, 12, 3378.	3.7	15
22	Multi-Omics Data Integration in Extracellular Vesicle Biology—Utopia or Future Reality?. International Journal of Molecular Sciences, 2020, 21, 8550.	4.1	26
23	Complexation with Random Methyl-β-Cyclodextrin and (2-Hydroxypropyl)-β-Cyclodextrin Promotes Chrysin Effect and Potential for Liver Fibrosis Therapy. Materials, 2020, 13, 5003.	2.9	5
24	Comprehensive Appraisal of Graphene–Oxide Ratio in Porous Biopolymer Hybrids Targeting Bone-Tissue Regeneration. Nanomaterials, 2020, 10, 1444.	4.1	18
25	Connecting the Missing Dots: ncRNAs as Critical Regulators of Therapeutic Susceptibility in Breast Cancer. Cancers, 2020, 12, 2698.	3.7	9
26	Cyclodextrin Complexation Improves the Solubility and Caco-2 Permeability of Chrysin. Materials, 2020, 13, 3618.	2.9	39
27	The Cellular and Molecular Patterns Involved in the Neural Differentiation of Adipose-Derived Stem Cells. Advances in Experimental Medicine and Biology, 2020, 1298, 23-41.	1.6	3
28	Cellular Interplay as a Consequence of Inflammatory Signals Leading to Liver Fibrosis Development. Cells, 2020, 9, 461.	4.1	38
29	Release of the Non-Steroidal Anti-Inflammatory Drug Flufenamic Acid by Multiparticulate Delivery Systems Promotes Adipogenic Differentiation of Adipose-Derived Stem Cells. Materials, 2020, 13, 1550.	2.9	4
30	Versatile Biomaterial Platform Enriched with Graphene Oxide and Carbon Nanotubes for Multiple Tissue Engineering Applications. International Journal of Molecular Sciences, 2019, 20, 3868.	4.1	31
31	Fabrication and Biocompatibility Evaluation of Nanodiamonds-Gelatin Electrospun Materials Designed for Prospective Tissue Regeneration Applications. Materials, 2019, 12, 2933.	2.9	21
32	Graphene Oxide Enhances Chitosan-Based 3D Scaffold Properties for Bone Tissue Engineering. International Journal of Molecular Sciences, 2019, 20, 5077.	4.1	57
33	Functional Polyimide-Based Electrospun Fibers for Biomedical Application. Materials, 2019, 12, 3201.	2.9	22
34	Pullulan/Poly(Vinyl Alcohol) Composite Hydrogels for Adipose Tissue Engineering. Materials, 2019, 12, 3220.	2.9	21
35	Epitranscriptomic Signatures in IncRNAs and Their Possible Roles in Cancer. Genes, 2019, 10, 52.	2.4	74
36	Nanocomposite foams based on flexible biobased thermoplastic polyurethane and ZnO nanoparticles as potential wound dressing materials. Materials Science and Engineering C, 2019, 104, 109893.	7.3	67

Sorina Dinescu

#	Article	IF	CITATIONS
37	Efficiency of Multiparticulate Delivery Systems Loaded with Flufenamic Acid Designed for Burn Wound Healing Applications. Journal of Immunology Research, 2019, 2019, 1-13.	2.2	12
38	Circulatory leukotriene changes during bone healing following osteotomies prepared with Er:YAG laser and piezosurgery: an animal study. Biotechnology and Biotechnological Equipment, 2019, 33, 325-330.	1.3	0
39	Proteomic Technology "Lens―for Epithelial-Mesenchymal Transition Process Identification in Oncology. Analytical Cellular Pathology, 2019, 2019, 1-17.	1.4	10
40	Hema-Functionalized Graphene Oxide: a Versatile Nanofiller for Poly(Propylene Fumarate)-Based Hybrid Materials. Scientific Reports, 2019, 9, 18685.	3.3	20
41	Collagen-Based Hydrogels and Their Applications for Tissue Engineering and Regenerative Medicine. Polymers and Polymeric Composites, 2019, , 1643-1664.	0.6	7
42	Effects of starvation and refeeding on growth performance and stress defense mechanisms of stellate sturgeon Acipenser stellatus juveniles from aquaculture. Acta Biochimica Polonica, 2019, 66, 47-59.	0.5	5
43	Synergistic effect of carbon nanotubes and graphene for high performance cellulose acetate membranes in biomedical applications. Carbohydrate Polymers, 2018, 183, 50-61.	10.2	62
44	Collagen-Based Hydrogels and Their Applications for Tissue Engineering and Regenerative Medicine. Polymers and Polymeric Composites, 2018, , 1-21.	0.6	5
45	Human Adipose-Derived Stem Cells for Tissue Engineering Approaches: Current Challenges and Perspectives. , 2018, , .		2
46	Porous poly(l-lactic acid) nanocomposite scaffolds with functionalized TiO2 nanoparticles: properties, cytocompatibility and drug release capability. Journal of Materials Science, 2018, 53, 11151-11166.	3.7	20
47	Protective effects of silymarin against bisphenol A-induced hepatotoxicity in mouse liver. Experimental and Therapeutic Medicine, 2017, 13, 821-828.	1.8	33
48	Chitosan-Graphene Oxide 3D scaffolds as Promising Tools for Bone Regeneration in Critical-Size Mouse Calvarial Defects. Scientific Reports, 2017, 7, 16641.	3.3	96
49	Evaluation of Hepatotoxicity with Treatment Doses of Flucytosine and Amphotericin B for Invasive Fungal Infections. BioMed Research International, 2016, 2016, 1-9.	1.9	12
50	About electrochemical stability and biocompatibility of two types of CoCr commercial dental alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 2016, 67, 1096-1104.	1.5	9
51	Effect of carboxylic acid functionalized graphene on physical-chemical and biological performances of polysulfone porous films. Polymer, 2016, 92, 1-12.	3.8	11
52	Gelatin–poly(vinyl alcohol) porous biocomposites reinforced with graphene oxide as biomaterials. Journal of Materials Chemistry B, 2016, 4, 282-291.	5.8	39
53	A 3D Porous Gelatin-Alginate-Based-IPN Acts as an Efficient Promoter of Chondrogenesis from Human Adipose-Derived Stem Cells. Stem Cells International, 2015, 2015, 1-17.	2.5	27
54	Synthesis, characterization and in vitro studies of polysulfone/graphene oxide composite membranes. Composites Part B: Engineering, 2015, 72, 108-115.	12.0	78

Sorina Dinescu

#	Article	IF	CITATIONS
55	In vitro cytocompatibility evaluation of chitosan/graphene oxide 3D scaffold composites designed for bone tissue engineering. Bio-Medical Materials and Engineering, 2014, 24, 2249-2256.	0.6	84
56	Perilipin Expression Reveals Adipogenic Potential of hADSCs inside Superporous Polymeric Cellular Delivery Systems. BioMed Research International, 2014, 2014, 1-9.	1.9	4
57	Synthesis, characterization, and in vitro studies of graphene oxide/chitosan–polyvinyl alcohol films. Carbohydrate Polymers, 2014, 102, 813-820.	10.2	126
58	In vitro bio-functional performances of the novel superelastic beta-type Ti–23Nb–0.7Ta–2Zr–0.5N alloy. Materials Science and Engineering C, 2014, 35, 411-419.	7.3	32
59	Comparative study of leptin and leptin receptor gene expression in different swine breeds. Genetics and Molecular Research, 2014, 13, 7140-7148.	0.2	11
60	Biocompatibility Assessment of Novel Collagen-Sericin Scaffolds Improved with Hyaluronic Acid and Chondroitin Sulfate for Cartilage Regeneration. BioMed Research International, 2013, 2013, 1-11.	1.9	50
61	Sericin Enhances the Bioperformance of Collagen-Based Matrices Preseeded with Human-Adipose Derived Stem Cells (hADSCs). International Journal of Molecular Sciences, 2013, 14, 1870-1889.	4.1	37
62	Preparation and in vitro, bulk, and surface investigation of chitosan/graphene oxide composite films. Polymer Composites, 2013, 34, 2116-2124.	4.6	22
63	Modulation of Adipogenic Conditions for Prospective Use of hADSCs in Adipose Tissue Engineering. International Journal of Molecular Sciences, 2012, 13, 15881-15900.	4.1	29
64	The Impact of Graphene Oxide on Bone Regeneration Therapies. , 0, , .		3
65	Adipose tissue engineering and adipogenesis – a review. Reviews in Biological and Biomedical Sciences, 0, , 17-26.	0.1	13
66	MNPs-Enriched Biomaterials as Promising Candidates for Nervous Tissue Engineering Applications. , 0, ,		0