Andrew A Butler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1051034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Normal growth and development in the absence of hepatic insulin-like growth factor I. Proceedings of the United States of America, 1999, 96, 7324-7329.	3.3	1,291
2	The Somatomedin Hypothesis: 2001. Endocrine Reviews, 2001, 22, 53-74.	8.9	1,045
3	Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature, 2012, 485, 62-68.	13.7	638
4	A Unique Metalolic Sysdrone Causes Obesity in the Melanocortin-3 Receptor-Deficient Mouse. Endocrinology, 2000, 141, 3518-3521.	1.4	637
5	Identification of Adropin as a Secreted Factor Linking Dietary Macronutrient Intake with Energy Homeostasis and Lipid Metabolism. Cell Metabolism, 2008, 8, 468-481.	7.2	369
6	Serotonin Reciprocally Regulates Melanocortin Neurons to Modulate Food Intake. Neuron, 2006, 51, 239-249.	3.8	345
7	The central melanocortin system directly controls peripheral lipid metabolism. Journal of Clinical Investigation, 2007, 117, 3475-3488.	3.9	341
8	Control of Growth by the Somatropic Axis: Growth Hormone and the Insulin-Like Growth Factors Have Related and Independent Roles. Annual Review of Physiology, 2001, 63, 141-164.	5.6	303
9	Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat. Nature Neuroscience, 2001, 4, 605-611.	7.1	302
10	Blocking Lactate Export by Inhibiting the Myc Target MCT1 Disables Glycolysis and Glutathione Synthesis. Cancer Research, 2014, 74, 908-920.	0.4	291
11	The Central Melanocortin System Can Directly Regulate Serum Insulin Levels*. Endocrinology, 2000, 141, 3072-3079.	1.4	267
12	Obesity accelerates thymic aging. Blood, 2009, 114, 3803-3812.	0.6	253
13	A Recurring Problem With the Analysis of Energy Expenditure in Genetic Models Expressing Lean and Obese Phenotypes. Diabetes, 2010, 59, 323-329.	0.3	238
14	Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 121, 19-26.	0.7	219
15	Serotonin 2C Receptor Agonists Improve Type 2 Diabetes via Melanocortin-4 Receptor Signaling Pathways. Cell Metabolism, 2007, 6, 398-405.	7.2	200
16	The melanocortin receptors: Lessons from knockout models. Neuropeptides, 2002, 36, 77-84.	0.9	199
17	Adropin Deficiency Is Associated With Increased Adiposity and Insulin Resistance. Obesity, 2012, 20, 1394-1402.	1.5	198

A Unique Metalolic Sysdrone Causes Obesity in the Melanocortin-3 Receptor-Deficient Mouse. , 0, .

182

#	Article	IF	CITATIONS
19	The melanocortin system and energy balance. Peptides, 2006, 27, 281-290.	1.2	161
20	What is the role of circulating IGF-I?. Trends in Endocrinology and Metabolism, 2001, 12, 48-52.	3.1	157
21	A Role for the Endogenous Opioid β-Endorphin in Energy Homeostasis. Endocrinology, 2003, 144, 1753-1760.	1.4	150
22	Low Circulating Adropin Concentrations with Obesity and Aging Correlate with Risk Factors for Metabolic Disease and Increase after Gastric Bypass Surgery in Humans. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 3783-3791.	1.8	145
23	Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet-induced obese mice with insulin resistance. Molecular Metabolism, 2015, 4, 310-324.	3.0	132
24	Diet-Genotype Interactions in the Development of the Obese, Insulin-Resistant Phenotype of C57BL/6J Mice Lacking Melanocortin-3 or -4 Receptors. Endocrinology, 2006, 147, 2183-2196.	1.4	128
25	Differential Role of Melanocortin Receptor Subtypes in Cachexia. Endocrinology, 2003, 144, 1513-1523.	1.4	124
26	The Melanocortin-3 Receptor Is Required for Entrainment to Meal Intake. Journal of Neuroscience, 2008, 28, 12946-12955.	1.7	120
27	Identification of SR3335 (ML-176): A Synthetic RORα Selective Inverse Agonist. ACS Chemical Biology, 2011, 6, 218-222.	1.6	114
28	Knockout Studies Defining Different Roles for Melanocortin Receptors in Energy Homeostasis. Annals of the New York Academy of Sciences, 2003, 994, 240-245.	1.8	100
29	Impaired Coordination of Nutrient Intake and Substrate Oxidation in Melanocortin-4 Receptor Knockout Mice. Endocrinology, 2004, 145, 243-252.	1.4	94
30	Neural melanocortin receptors in obesity and related metabolic disorders. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 482-494.	1.8	94
31	Presynaptic Melanocortin-4 Receptors on Vagal Afferent Fibers Modulate the Excitability of Rat Nucleus Tractus Solitarius Neurons. Journal of Neuroscience, 2008, 28, 4957-4966.	1.7	88
32	Melanocortin signaling in the CNS directly regulates circulating cholesterol. Nature Neuroscience, 2010, 13, 877-882.	7.1	86
33	Regulation of Substrate Oxidation Preferences in Muscle by the Peptide Hormone Adropin. Diabetes, 2014, 63, 3242-3252.	0.3	86
34	Central receptors mediating the cardiovascular actions of melanocyte stimulating hormones. Journal of Hypertension, 2006, 24, 2239-2246.	0.3	80
35	Analysis of the therapeutic functions of novel melanocortin receptor agonists in MC3R- and MC4R-deficient C57BL/6J mice. Peptides, 2009, 30, 1892-1900.	1.2	73
36	Adropin: An endocrine link between the biological clock and cholesterol homeostasis. Molecular Metabolism, 2018, 8, 51-64.	3.0	69

#	Article	IF	CITATIONS
37	Protein Malnutrition during Pregnancy in C57BL/6J Mice Results in Offspring with Altered Circadian Physiology before Obesity. Endocrinology, 2010, 151, 1570-1580.	1.4	64
38	Genetic disruption of γ-melanocyte–stimulating hormone signaling leads to salt-sensitive hypertension in the mouse. Journal of Clinical Investigation, 2003, 111, 1251-1258.	3.9	58
39	Genetic Dissection of the Functions of the Melanocortin-3 Receptor, a Seven-transmembrane G-protein-coupled Receptor, Suggests Roles for Central and Peripheral Receptors in Energy Homeostasis. Journal of Biological Chemistry, 2011, 286, 40771-40781.	1.6	53
40	Minireview: Tissue-Specific Versus Generalized Gene Targeting of the igf1 and igf1r Genes and Their Roles in Insulin-Like Growth Factor Physiology. , 0, .		53
41	The peptide hormone adropin regulates signal transduction pathways controlling hepatic glucose metabolism in a mouse model of diet-induced obesity. Journal of Biological Chemistry, 2019, 294, 13366-13377.	1.6	52
42	Stimulation of tumor growth by recombinant human insulin-like growth factor-I (IGF-I) is dependent on the dose and the level of IGF-I receptor expression. Cancer Research, 1998, 58, 3021-7.	0.4	50
43	Knockout models resulting in the development of obesity. Trends in Genetics, 2001, 17, S50-S54.	2.9	49
44	Melanocortinâ€3 receptors are involved in adaptation to restricted feeding. Genes, Brain and Behavior, 2012, 11, 291-302.	1.1	48
45	Disproportionate Inhibition of Feeding in <i>A^y</i> Mice by Certain Stressors: A Cautionary Note. Neuroendocrinology, 2000, 72, 126-132.	1.2	45
46	Low plasma adropin concentrations increase risks of weight gain and metabolic dysregulation in response to a high-sugar diet in male nonhuman primates. Journal of Biological Chemistry, 2019, 294, 9706-9719.	1.6	45
47	Role of Adiponectin and Inflammation in Insulin Resistance of Mc3r and Mc4r Knockout Mice. Obesity, 2007, 15, 2664-2672.	1.5	43
48	Central nervous system melanocortinâ€3 receptors are required for synchronizing metabolism during entrainment to restricted feeding during the light cycle. FASEB Journal, 2010, 24, 862-872.	0.2	43
49	Hypothalamic malonyl-CoA and the control of food intake. Physiology and Behavior, 2013, 122, 17-24.	1.0	42
50	Insulin-like Growth Factors in Pediatric Health and Disease. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 4355-4361.	1.8	40
51	Double Leptin and Melanocortin-4 Receptor Gene Mutations Have an Additive Effect on Fat Mass and Are Associated with Reduced Effects of Leptin on Weight Loss and Food Intake. Endocrinology, 2005, 146, 4257-4265.	1.4	40
52	Genetic disruption of γ-melanocyte–stimulating hormone signaling leads to salt-sensitive hypertension in the mouse. Journal of Clinical Investigation, 2003, 111, 1251-1258.	3.9	39
53	Fasting plasma adropin concentrations correlate with fat consumption in human females. Obesity, 2014, 22, 1056-1063.	1.5	36
54	Inverse association between carbohydrate consumption and plasma adropin concentrations in humans. Obesity, 2016, 24, 1731-1740.	1.5	36

#	Article	IF	CITATIONS
55	Melanocortin-3 Receptors and Metabolic Homeostasis. Progress in Molecular Biology and Translational Science, 2013, 114, 109-146.	0.9	31
56	Biphasic Effect of Melanocortin Agonists on Metabolic Rate and Body Temperature. Cell Metabolism, 2014, 20, 333-345.	7.2	31
57	Differential Responses of Plasma Adropin Concentrations To Dietary Glucose or Fructose Consumption In Humans. Scientific Reports, 2015, 5, 14691.	1.6	28
58	Growth hormone (GH) and insulin-like growth factor-I (IGF-I) treatment of the GH-deficient dwarf rat: differential effects on IGF-I transcription start site expression in hepatic and extrahepatic tissues and lack of effect on type I IGF receptor mRNA expression. Molecular and Cellular Endocrinology, 1994, 101, 321-330.	1.6	27
59	In Vivo Regulation of CrkII and CrkL Proto-oncogenes in the Uterus by Insulin-like Growth Factor-I. Journal of Biological Chemistry, 1997, 272, 27660-27664.	1.6	27
60	Growth hormone (GH) status regulates GH receptor and GH binding protein mRNA in a tissue- and transcript-specific manner but has no effect on insulin-like growth factor-I receptor mRNA in the rat. Molecular and Cellular Endocrinology, 1996, 116, 181-189.	1.6	26
61	Counterintuitive Effects of Double-Heterozygous Null Melanocortin-4 Receptor and Leptin Genes on Diet-Induced Obesity and Insulin Resistance in C57BL/6J Mice. Endocrinology, 2008, 149, 174-184.	1.4	26
62	Homeostastic and non-homeostatic functions of melanocortin-3 receptors in the control of energy balance and metabolism. Physiology and Behavior, 2011, 104, 546-554.	1.0	26
63	A Life without Hunger: The Ups (and Downs) to Modulating Melanocortin-3 Receptor Signaling. Frontiers in Neuroscience, 2017, 11, 128.	1.4	25
64	The effects of octreotide on GH receptor and IGF-I expression in the GH-deficient rat. Journal of Endocrinology, 1996, 149, 223-231.	1.2	24
65	Doubled lifespan and patientâ€like pathologies in progeria mice fed highâ€fat diet. Aging Cell, 2019, 18, e12852.	3.0	23
66	Melanocortin-3 receptors in the limbic system mediate feeding-related motivational responses during weight loss. Molecular Metabolism, 2016, 5, 566-579.	3.0	21
67	Fructose-induced hypertriglyceridemia in rhesus macaques is attenuated with fish oil or ApoC3 RNA interference. Journal of Lipid Research, 2019, 60, 805-818.	2.0	19
68	Hepatocyte expression of the micropeptide adropin regulates the liver fasting response and is enhanced by caloric restriction. Journal of Biological Chemistry, 2020, 295, 13753-13768.	1.6	19
69	IGF-I Receptor Function. , 1999, , 143-163.		19
70	A derivative of the melanocortin receptor antagonist SHU9119 (PG932) increases food intake when administered peripherally. Peptides, 2008, 29, 104-111.	1.2	18
71	The role of melanocortin neuronal pathways in circadian biology: a new homeostatic output involving melanocortinâ€3 receptors?. Obesity Reviews, 2009, 10, 14-24.	3.1	18
72	Assessing Interactions Between Ghsr and Mc3r Reveals a Role for AgRP in the Expression of Food Anticipatory Activity in Male Mice. Endocrinology, 2014, 155, 4843-4855.	1.4	18

#	Article	IF	CITATIONS
73	Adropin correlates with aging-related neuropathology in humans and improves cognitive function in aging mice. Npj Aging and Mechanisms of Disease, 2021, 7, 23.	4.5	18
74	Melanocortin-3 receptors expressed in Nkx2.1(+ve) neurons are sufficient for controlling appetitive responses to hypocaloric conditioning. Scientific Reports, 2017, 7, 44444.	1.6	17
75	Neurovascular protection by adropin in experimental ischemic stroke through an endothelial nitric oxide synthase-dependent mechanism. Redox Biology, 2021, 48, 102197.	3.9	17
76	Unravelling the mysterious roles of melanocortin-3 receptors in metabolic homeostasis and obesity using mouse genetics. International Journal of Obesity Supplements, 2014, 4, S37-S44.	12.5	15
77	Insulin-Like Growth Factor-I: Compartmentalization Within the Somatotropic Axis?. Physiology, 2002, 17, 82-85.	1.6	14
78	Role of angiopoietin-like protein 3 in sugar-induced dyslipidemia in rhesus macaques: suppression by fish oil or RNAi. Journal of Lipid Research, 2020, 61, 376-386.	2.0	13
79	Adropin and insulin resistance: Integration of endocrine, circadian, and stress signals regulating glucose metabolism. Obesity, 2021, 29, 1799-1801.	1.5	13
80	Obestatin and adropin in Praderâ€Willi syndrome and nonsyndromic obesity: Associations with weight, BMIâ€₽, and HOMAâ€IR. Pediatric Obesity, 2019, 14, e12493.	1.4	11
81	Ovariectomy and genes encoding core circadian regulatory proteins in murine bone. Osteoporosis International, 2011, 22, 1633-1639.	1.3	8
82	The Importance of Keeping Time in the Liver. Endocrinology, 2021, 162, .	1.4	8
83	IGF-I and IGF-binding protein-3 in plasma of GH-deficient rats. Journal of Endocrinology, 1996, 150, 67-76.	1.2	7
84	Segregation of Clock and Non-Clock Regulatory Functions of REV-ERB. Cell Metabolism, 2015, 22, 197-198.	7.2	7
85	Melanotan II causes hypothermia in mice by activation of mast cells and stimulation of histamine 1 receptors. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E357-E366.	1.8	7
86	Melanocortin pathway: animal models of obesity and disease. Annales D'Endocrinologie, 2002, 63, 121-4.	0.6	7
87	Adropin – a circulating factor in metabolic control or a drop in the ocean?. Expert Review of Endocrinology and Metabolism, 2016, 11, 239-241.	1.2	5
88	Melanocortinâ€3 Receptors Expressed on Agoutiâ€Related Peptide Neurons Inhibit Feeding Behavior in Female Mice. Obesity, 2018, 26, 1849-1855.	1.5	5
89	Adropin transgenesis improves recognition memory in diet-induced obese LDLR-deficient C57BL/6J mice. Peptides, 2021, 146, 170678.	1.2	4
90	More News About NUCB2/Nesfatin-1: A New Factor in the Hypothalamic Control of Glucose Homeostasis?: FIG. 1 Diabetes, 2012, 61, 1920-1922.	0.3	3

#	Article	IF	CITATIONS
91	SIRT1 in the Ventromedial Hypothalamus: A Nutrient Sensor Input Into the Internal Timekeeper. Endocrinology, 2015, 156, 1936-1938.	1.4	0
92	Role of adropin in reducing arterial stiffness in type 2 diabetes. FASEB Journal, 2022, 36, .	0.2	0