Xin Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10510305/publications.pdf

Version: 2024-02-01

361413 395702 2,007 37 20 33 citations h-index g-index papers 37 37 37 2063 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Modulation of Calcium Current in Arteriolar Smooth Muscle by $\hat{l}\pm v\hat{l}^23$ and $\hat{l}\pm 5\hat{l}^21$ Integrin Ligands. Journal of Cell Biology, 1998, 143, 241-252.	5.2	177
2	Regulation of the L-type Calcium Channel by $\hat{l}\pm5\hat{l}^21$ Integrin Requires Signaling between Focal Adhesion Proteins. Journal of Biological Chemistry, 2001, 276, 30285-30292.	3.4	160
3	Integrins as Unique Receptors for Vascular Control. Journal of Vascular Research, 2003, 40, 211-233.	1.4	158
4	Integrins and mechanotransduction of the vascular myogenic response. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1427-H1433.	3.2	151
5	Integrins as receptor targets for neurological disorders. , 2012, 134, 68-81.		149
6	Regulation of ion channels by protein tyrosine phosphorylation. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H1835-H1862.	3.2	129
7	Integrin Receptor Activation Triggers Converging Regulation of Cav1.2 Calcium Channels by c-Src and Protein Kinase A Pathways. Journal of Biological Chemistry, 2006, 281, 14015-14025.	3.4	119
8	$\rm \hat{l}\pm4\hat{l}^21$ Integrin Activation of L-Type Calcium Channels in Vascular Smooth Muscle Causes Arteriole Vasoconstriction. Circulation Research, 2002, 90, 473-480.	4.5	106
9	Estrous Cycle Regulation of Extrasynaptic <i>i'</i> -Containing GABA _A Receptor-Mediated Tonic Inhibition and Limbic Epileptogenesis. Journal of Pharmacology and Experimental Therapeutics, 2013, 346, 146-160.	2.5	84
10	Midazolam-Resistant Seizures and Brain Injury after Acute Intoxication of Diisopropylfluorophosphate, an Organophosphate Pesticide and Surrogate for Nerve Agents. Journal of Pharmacology and Experimental Therapeutics, 2018, 367, 302-321.	2.5	65
11	Regulation of Ion Channels by Integrins. Cell Biochemistry and Biophysics, 2002, 36, 41-66.	1.8	62
12	Cardiomyocyte contractile status is associated with differences in fibronectin and integrin interactions. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H2071-H2081.	3.2	61
13	Perimenstrual-Like Hormonal Regulation of Extrasynaptic Î'-Containing GABA _A Receptors Mediating Tonic Inhibition and Neurosteroid Sensitivity. Journal of Neuroscience, 2014, 34, 14181-14197.	3.6	55
14	Neurostereology protocol for unbiased quantification of neuronal injury and neurodegeneration. Frontiers in Aging Neuroscience, 2015, 7, 196.	3.4	55
15	Potentiation of large conductance, Ca ²⁺ â€activated K ⁺ (BK) channels by α5β1 integrin activation in arteriolar smooth muscle. Journal of Physiology, 2008, 586, 1699-1713.	2.9	52
16	Extrasynaptic γâ€aminobutyric acid type A receptor–mediated sex differences in the antiseizure activity of neurosteroids in status epilepticus and complex partial seizures. Epilepsia, 2019, 60, 730-743.	5.1	48
17	$\hat{l}\pm 5\hat{l}^21$ Integrin Engagement Increases Large Conductance, Ca2+-activated K+ Channel Current and Ca2+ Sensitivity through c-src-mediated Channel Phosphorylation. Journal of Biological Chemistry, 2010, 285, 131-141.	3.4	43
18	Phosphoregulation of Cardiac Inotropy via Myosin Binding Protein-C During Increased Pacing Frequency or \hat{l}^2 ₁ -Adrenergic Stimulation. Circulation: Heart Failure, 2015, 8, 595-604.	3.9	43

#	Article	IF	Citations
19	Benzodiazepine-refractory status epilepticus, neuroinflammation, and interneuron neurodegeneration after acute organophosphate intoxication. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2845-2858.	3.8	41
20	Novel Role for Vinculin in Ventricular Myocyte Mechanics and Dysfunction. Biophysical Journal, 2013, 104, 1623-1633.	0.5	30
21	Coordinated Regulation of Vascular Ca2+ and K+ Channels by Integrin Signaling. Advances in Experimental Medicine and Biology, 2010, 674, 69-79.	1.6	27
22	Comparative profile of refractory status epilepticus models following exposure of cholinergic agents pilocarpine, DFP, and soman. Neuropharmacology, 2021, 191, 108571.	4.1	24
23	Measuring Histone Deacetylase Inhibition in the Brain. Current Protocols in Pharmacology, 2018, 81, e41.	4.0	23
24	Magnetic resonance imaging analysis of longâ€ŧerm neuropathology after exposure to the nerve agent soman: correlation with histopathology and neurological dysfunction. Annals of the New York Academy of Sciences, 2020, 1480, 116-135.	3.8	22
25	Phenobarbital as alternate anticonvulsant for organophosphateâ€induced benzodiazepineâ€iefractory status epilepticus and neuronal injury. Epilepsia Open, 2020, 5, 198-212.	2.4	19
26	Sodium azide dilates coronary arterioles via activation of inward rectifier K+ channels and Na+-K+-ATPase. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1617-H1623.	3.2	18
27	Application of Atomic Force Microscopy Measurements on Cardiovascular Cells. Methods in Molecular Biology, 2012, 843, 229-244.	0.9	14
28	PR-independent neurosteroid regulation of $\hat{l}\pm 2$ -GABA-A receptors in the hippocampus subfields. Brain Research, 2017, 1659, 142-147.	2.2	14
29	Atomic force microscopy investigations of fibronectin and $\hat{l}\pm 5\hat{l}^21$ -integrin signaling in neuroplasticity and seizure susceptibility in experimental epilepsy. Epilepsy Research, 2017, 138, 71-80.	1.6	14
30	Atomic Force Microscopy Protocol for Measurement of Membrane Plasticity and Extracellular Interactions in Single Neurons in Epilepsy. Frontiers in Aging Neuroscience, 2016, 8, 88.	3.4	13
31	Fibronectin increases the force production of mouse papillary muscles via $\hat{1}\pm5\hat{1}^21$ integrin. Journal of Molecular and Cellular Cardiology, 2011, 50, 203-213.	1.9	12
32	A Comprehensive and Advanced Mouse Model of Postâ€Traumatic Epilepsy with Robust Spontaneous Recurrent Seizures. Current Protocols, 2022, 2, .	2.9	10
33	Long-term changes in neuroimaging markers, cognitive function and psychiatric symptoms in an experimental model of Gulf War Illness. Life Sciences, 2021, 285, 119971.	4.3	8
34	Atomic force microscopy study of ECMâ€integrin modulation of neuroplasticity in the hippocampal dentate granule cells in epilepsy. FASEB Journal, 2012, 26, 672.8.	0.5	1
35	Integrin activation results in cSrc mediated phosphorylation and potentiation of Maxi K channels. FASEB Journal, 2007, 21, .	0.5	0
36	Ovarian cycleâ€related effects of neurosteroids on GABAâ€A receptorâ€mediated phasic and tonic currents in the hippocampus. FASEB Journal, 2012, 26, .	0.5	0

#	Article	IF	CITATIONS
37	TNFâ€Î± mediated regulation of myosin light chain 20 phosphorylation in lymphatic muscle. FASEB Journal, 2012, 26, 677.6.	0.5	0