Anne C Julbe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1050802/publications.pdf

Version: 2024-02-01

		81743	95083
171	5,640 citations	39	68
papers	citations	h-index	g-index
170	172	172	6125
173	173	173	6135
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Salt storage and induced crystallisation in porous asymmetric inorganic membranes. Journal of Membrane Science, 2022, 641, 119872.	4.1	2
2	Investigation of reactive perovskite materials for solar fuel production via two-step redox cycles: Thermochemical activity, thermodynamic properties and reduction kinetics. Materials Chemistry and Physics, 2022, 276, 125358.	2.0	14
3	Gas Adsorption in Zeolite and Thin Zeolite Layers: Molecular Simulation, Experiment, and Adsorption Potential Theory. Langmuir, 2022, 38, 5428-5438.	1.6	8
4	Synthesis and thermochemical redox cycling of porous ceria microspheres for renewable fuels production from solar-aided water-splitting and CO2 utilization. Applied Physics Letters, 2021, 119, .	1.5	14
5	Demonstration of a ceria membrane solar reactor promoted by dual perovskite coatings for continuous and isothermal redox splitting of CO2 and H2O. Journal of Membrane Science, 2021, 634, 119387.	4.1	15
6	Thermochemical solar-driven reduction of CO2 into separate streams of CO and O2 via an isothermal oxygen-conducting ceria membrane reactor. Chemical Engineering Journal, 2021, 422, 130026.	6.6	15
7	Hydrogen selective palladium-alumina composite membranes prepared by Atomic Layer Deposition. Journal of Membrane Science, 2020, 596, 117701.	4.1	29
8	Two-step CO2 and H2O splitting using perovskite-coated ceria foam for enhanced green fuel production in a porous volumetric solar reactor. Journal of CO2 Utilization, 2020, 41, 101257.	3.3	29
9	Functionalization of 3D printed ABS filters with MOF for toxic gas removal. Journal of Industrial and Engineering Chemistry, 2020, 89, 194-203.	2.9	29
10	Investigation of the surface properties and microstructure of TiO2 sorbents prepared in supercritical CO2 for the treatment of Sr2+ contaminated effluents. SN Applied Sciences, 2020, 2, 1.	1.5	O
11	Remarkable performance of microstructured ceria foams for thermochemical splitting of H2O and CO2 in a novel high–temperature solar reactor. Chemical Engineering Research and Design, 2020, 156, 311-323.	2.7	38
12	Solar thermochemical fuel production from H2O and CO2 splitting via two-step redox cycling of reticulated porous ceria structures integrated in a monolithic cavity-type reactor. Energy, 2020, 201, 117649.	4.5	59
13	Atomic layer deposition (ALD) on inorganic or polymeric membranes. Journal of Applied Physics, 2019, 126, .	1.1	36
14	Controlled grafting of dialkylphosphonate-based ionic liquids on \hat{I}^3 -alumina: design of hybrid materials with high potential for CO ₂ separation applications. RSC Advances, 2019, 9, 19882-19894.	1.7	12
15	Lanthanum manganite perovskite ceramic powders for CO2 splitting: Influence of Pechini synthesis parameters on sinterability and reactivity. Ceramics International, 2019, 45, 15636-15648.	2.3	23
16	Fe-Nanoporous Carbon Derived from MIL-53(Fe): A Heterogeneous Catalyst for Mineralization of Organic Pollutants. Nanomaterials, 2019, 9, 641.	1.9	31
17	About the role of adsorption in inorganic and composite membranes. Current Opinion in Chemical Engineering, 2019, 24, 88-97.	3.8	14
18	Novel membrane percrystallisation process for nickel sulphate production. Hydrometallurgy, 2019, 185, 210-217.	1.8	15

#	Article	IF	CITATIONS
19	Application of Fe-MFI zeolite catalyst in heterogeneous electro-Fenton process for water pollutants abatement. Microporous and Mesoporous Materials, 2019, 278, 64-69.	2.2	36
20	Recent progress on ceria doping and shaping strategies for solar thermochemical water and CO ₂ splitting cycles. AIMS Materials Science, 2019, 6, 657-684.	0.7	34
21	Acoustic emission monitoring during gas permeation: a new operando diagnostic tool for porous membranes. Journal of Membrane Science, 2018, 555, 88-96.	4.1	3
22	Design and fabrication of highly selective H2 sensors based on SIM-1 nanomembrane-coated ZnO nanowires. Sensors and Actuators B: Chemical, 2018, 264, 410-418.	4.0	37
23	Novel inorganic membrane for the percrystallization of mineral, food and pharmaceutical compounds. Journal of Membrane Science, 2018, 550, 407-415.	4.1	24
24	Environmental mineralization of caffeine micro-pollutant by Fe-MFI zeolites. Environmental Science and Pollution Research, 2018, 25, 3628-3635.	2.7	10
25	Non-Stoichiometric Redox Active Perovskite Materials for Solar Thermochemical Fuel Production: A Review. Catalysts, 2018, 8, 611.	1.6	67
26	Exploring the Gas-Permeation Properties of Proton-Conducting Membranes Based on Protic Imidazolium Ionic Liquids: Application in Natural Gas Processing. Membranes, 2018, 8, 75.	1.4	6
27	Atomic Layer Deposition for Membranes: Basics, Challenges, and Opportunities. Chemistry of Materials, 2018, 30, 7368-7390.	3.2	133
28	Initial Steps toward the Development of Grafted Ionic Liquid Membranes for the Selective Transport of CO ₂ . Industrial & Engineering Chemistry Research, 2018, 57, 16027-16040.	1.8	15
29	High-Performance Nanowire Hydrogen Sensors by Exploiting the Synergistic Effect of Pd Nanoparticles and Metal–Organic Framework Membranes. ACS Applied Materials & Interfaces, 2018, 10, 34765-34773.	4.0	135
30	Fine control of NaCl crystal size and particle size in percrystallisation by tuning the morphology of carbonised sucrose membranes. Journal of Membrane Science, 2018, 567, 157-165.	4.1	17
31	Solâ€Gel Processed Membranes. , 2018, , 1971-2017.		0
32	Hierarchical Porous Polybenzimidazole Microsieves: An Efficient Architecture for Anhydrous Proton Transport via Polyionic Liquids. ACS Applied Materials & Efficient Architecture for Anhydrous Proton Transport via Polyionic Liquids.	4.0	24
33	Vibrational frequencies of hydrogenated silicon carbonitride: A DFT study. Surface and Coatings Technology, 2017, 325, 437-444.	2.2	6
34	Copper oxide - perovskite mixed matrix membranes delivering very high oxygen fluxes. Journal of Membrane Science, 2017, 526, 323-333.	4.1	40
35	Catalytic deoxygenation of model compounds from flash pyrolysis of lignocellulosic biomass over activated charcoal-based catalysts. Applied Catalysis B: Environmental, 2017, 219, 517-525.	10.8	30
36	A detailed insight into the preparation of nanocrystalline TiO2 powders in supercritical carbon dioxide. Journal of Materials Science, 2017, 52, 12635-12652.	1.7	4

#	Article	IF	CITATIONS
37	Nitrogen-Doped Graphitized Carbon Electrodes for Biorefractory Pollutant Removal. Journal of Physical Chemistry C, 2017, 121, 15188-15197.	1.5	41
38	Design of Phosphonated Imidazolium-Based Ionic Liquids Grafted on \hat{I}^3 -Alumina: Potential Model for Hybrid Membranes. International Journal of Molecular Sciences, 2016, 17, 1212.	1.8	13
39	Sintering and conductivity of nano-sized yttria-doped ZrO2 synthesized by a supercritical CO2-assisted sol-gel process. Journal of Supercritical Fluids, 2016, 115, 26-32.	1.6	3
40	ZSM-5 Zeolite Membrane. , 2016, , 2069-2070.		1
41	Gas permeation redox effect of binary iron oxide/cobalt oxide silica membranes. Separation and Purification Technology, 2016, 171, 248-255.	3.9	18
42	Zeolite A Type. , 2016, , 2055-2056.		7
43	Design of a novel fuel cell-Fenton system: a smart approach to zero energy depollution. Journal of Materials Chemistry A, 2016, 4, 17686-17693.	5.2	47
44	Zeolite T Type. , 2016, , 2058-2059.		0
45	Microwave PECVD Silicon Carbonitride Thin Films: A FTIR and Ellipsoporosimetry Study. Plasma Processes and Polymers, 2016, 13, 258-265.	1.6	9
46	MOF-Based Membrane Encapsulated ZnO Nanowires for Enhanced Gas Sensor Selectivity. ACS Applied Materials & Sen	4.0	346
47	Zeolite-Embedded Membrane. , 2016, , 2061-2062.		0
48	Zeolite Membrane. , 2016, , 2056-2057.		2
49	Seeding for Zeolite Membranes. , 2016, , 1760-1761.		О
50	Sol–Gel Processed Membranes. , 2016, , 1-47.		0
51	Biomass Gasification to Produce Syngas. , 2015, , 213-250.		31
52	PVDF-MFI mixed matrix membranes as VOCs adsorbers. Microporous and Mesoporous Materials, 2015, 207, 126-133.	2.2	53
53	Highly crystalline MOF-based materials grown on electrospun nanofibers. Nanoscale, 2015, 7, 5794-5802.	2.8	95
54	Novel concept for the preparation of gas selective nanocomposite membranes. European Physical Journal: Special Topics, 2015, 224, 1921-1933.	1.2	2

#	Article	IF	Citations
55	Temperature dependent transition point of purity versus flux for gas separation in Fe/Co-silica membranes. Separation and Purification Technology, 2015, 151, 284-291.	3.9	8
56	Improving the kinetics of the CO 2 gasification of char through the catalyst/biomass integration concept. Fuel, 2015, 154, 217-221.	3.4	17
57	Optimization of the molecular sieving properties of amorphous SiCXNY:H hydrogen selective membranes prepared by PECVD. European Physical Journal: Special Topics, 2015, 224, 1935-1943.	1.2	9
58	Catalytic effect of metal nitrate salts during pyrolysis of impregnated biomass. Journal of Analytical and Applied Pyrolysis, 2015, 113, 143-152.	2.6	74
59	An innovative approach for the preparation of confined ZIF-8 membranes by conversion of ZnO ALD layers. Journal of Membrane Science, 2015, 475, 39-46.	4.1	92
60	Binary iron cobalt oxide silica membrane for gas separation. Journal of Membrane Science, 2015, 474, 32-38.	4.1	50
61	Faujasite. , 2015, , 1-2.		1
62	An insight into the structure–property relationships of PECVD SiCxNy(O):H materials. Microporous and Mesoporous Materials, 2014, 191, 97-102.	2.2	12
63	Effect of Gas Adsorption on Acoustic Wave Propagation in MFI Zeolite Membrane Materials: Experiment and Molecular Simulation. Langmuir, 2014, 30, 10336-10343.	1.6	7
64	Novel microwave assisted approach to large scale nickel nanoparticle fabrication. Chemical Engineering Journal, 2014, 240, 155-160.	6.6	8
65	Potential of sub- and supercritical CO2 reaction media for sol–gel deposition of silica-based molecular sieve membranes. Separation and Purification Technology, 2014, 121, 30-37.	3.9	7
66	Zeolite Membrane., 2014,, 1-2.		0
67	Seeding for Zeolite Membranes. , 2014, , 1-2.		O
68	ZSM-5 Zeolite Membrane. , 2014, , 1-2.		0
69	Zeolite-Embedded Membrane. , 2014, , 1-2.		O
70	Catalytic Investigation of in Situ Generated Ni Metal Nanoparticles for Tar Conversion during Biomass Pyrolysis. Journal of Physical Chemistry C, 2013, 117, 23812-23831.	1.5	94
71	Evaluation of a new supercritical CO2-assisted deposition method for preparing gas selective polymer/zeolite composite membranes. Journal of Membrane Science, 2013, 429, 428-435.	4.1	10
72	Evaluation of a new On-Stream Supercritical Fluid Deposition process for sol–gel preparation of silica-based membranes on tubular supports. Journal of Supercritical Fluids, 2013, 77, 17-24.	1.6	6

#	Article	IF	Citations
73	Robust synthesis of yttria stabilized tetragonal zirconia powders (3Y-TZPs) using a semi-continuous process in supercritical CO2. Chemical Engineering Journal, 2013, 228, 622-630.	6.6	5
74	Long term pervaporation desalination of tubular MFI zeolite membranes. Journal of Membrane Science, 2012, 415-416, 816-823.	4.1	119
75	A short overview on purification and conditioning of syngas produced by biomass gasification: Catalytic strategies, process intensification and new concepts. Progress in Energy and Combustion Science, 2012, 38, 765-781.	15.8	234
76	Coupling microwave-assisted and classical heating methods for scaling-up MFI zeolite membrane synthesis. Journal of Membrane Science, 2012, 401-402, 144-151.	4.1	22
77	Amorphous Iron Oxide Decorated 3D Heterostructured Electrode for Highly Efficient Oxygen Reduction. Chemistry of Materials, 2011, 23, 4193-4198.	3.2	80
78	Deactivation and Regeneration of Oxygen Reduction Reactivity on Double Perovskite Ba ₂ Bi _{0.1} Sc _{0.2} Co _{1.7} O _{6â^'<i>x</i>for Intermediate-Temperature Solid Oxide Fuel Cells. Chemistry of Materials, 2011, 23, 1618-1624.}	3.2	49
79	Novel B-site ordered double perovskite Ba ₂ Bi _{0.1} Sc _{0.2} Co _{1.7} O _{6â^x} for highly efficient oxygen reduction reaction. Energy and Environmental Science, 2011, 4, 872-875.	15.6	112
80	Estimation of pore size distribution in MCM-41-type silica using a simple desorption technique. Adsorption, 2011, 17, 911-918.	1.4	25
81	The sol–gel route: A versatile process for up-scaling the fabrication of gas-tight thin electrolyte layers. Journal of Power Sources, 2011, 196, 2987-2993.	4.0	3
82	Iron Oxide Silica Derived from Sol-Gel Synthesis. Materials, 2011, 4, 448-456.	1.3	33
83	Microwave-assisted hydrothermal rapid synthesis of capillary MFI-type zeolite–ceramic membranes for pervaporation application. Journal of Membrane Science, 2010, 355, 28-35.	4.1	56
84	Synthesis and characterization of microporous silica–alumina membranes. Journal of Porous Materials, 2010, 17, 259-263.	1.3	34
85	Investigation of reactive cerium-based oxides for H2 production by thermochemical two-step water-splitting. Journal of Materials Science, 2010, 45, 4163-4173.	1.7	207
86	In situ generation of Ni metal nanoparticles as catalyst for H2-rich syngas production from biomass gasification. Applied Catalysis A: General, 2010, 382, 220-230.	2.2	117
87	Synthesis and characterization of silicon carbonitride films by plasma enhanced chemical vapor deposition (PECVD) using bis(dimethylamino)dimethylsilane (BDMADMS), as membrane for a small molecule gas separation. Applied Surface Science, 2010, 257, 1196-1203.	3.1	50
88	Synthesis of capillary titanosilicalite TS-1 ceramic membranes by MW-assisted hydrothermal heating for pervaporation application. Separation and Purification Technology, 2010, 75, 249-256.	3.9	15
89	Yttria stabilized zirconia synthesis in supercritical CO2: Understanding of particle formation mechanisms in CO2/co-solvent systems. Journal of the European Ceramic Society, 2010, 30, 1691-1698.	2.8	11
90	Controlled growth of thin and uniform TS-1 membranes by MW-assisted heating. Microporous and Mesoporous Materials, 2010, 128, 136-143.	2.2	23

#	Article	IF	CITATIONS
91	Catalytic membrane materials with a hierarchical porosity and their performance in total oxidation of propene. Catalysis Today, 2010, 156, 216-222.	2.2	17
92	Synthesis of PECVD a-SiCXNY:H membranes as molecular sieves for small gas separation. Journal of Membrane Science, 2009, 329, 130-137.	4.1	56
93	NafionÂ $^{\circ}$ /H-ZSM-5 composite membranes with superior performance for direct methanol fuel cells. Journal of Membrane Science, 2009, 338, 75-83.	4.1	27
94	Hierarchical porous silica membranes with dispersed Pt nanoparticles. Microporous and Mesoporous Materials, 2009, 126, 222-227.	2.2	23
95	Preparation of composite zeolite membrane separator/contactor for ozone water treatment. Microporous and Mesoporous Materials, 2008, 115, 137-146.	2.2	29
96	Potentialities of the sol–gel route to develop cathode and electrolyte thick layers. Surface and Coatings Technology, 2008, 203, 901-904.	2.2	11
97	New approaches in the design of ceramic and hybrid membranes. Journal of Membrane Science, 2008, 316, 176-185.	4.1	32
98	Effect of synthesis conditions on the pore structure and degree of heteroatom insertion in Zr-doped SBA-15 silica-based materials prepared by classical or microwave-assisted hydrothermal treatment. Microporous and Mesoporous Materials, 2008, 110, 111-118.	2.2	26
99	Microporous Silica Membrane: Basic Principles and Recent Advances. Membrane Science and Technology, 2008, 13, 33-79.	0.5	22
100	One pot synthesis of hierarchical porous silica membrane material with dispersed Pt nanoparticles using a microwave-assisted sol–gel route. Journal of Materials Chemistry, 2008, 18, 4274.	6.7	35
101	Zeolite Membranes $\hat{a} \in \text{``Synthesis'}$, Characterization and Application. Studies in Surface Science and Catalysis, 2007, , 181-219.	1.5	33
102	Ultra-rapid production of MFI membranes by coupling microwave-assisted synthesis with either ozone or calcination treatment. Microporous and Mesoporous Materials, 2007, 99, 197-205.	2.2	40
103	Pyrolysis of metal impregnated biomass: An innovative catalytic way to produce gas fuel. Journal of Analytical and Applied Pyrolysis, 2007, 78, 291-300.	2.6	100
104	Soft-Chemistry Synthesis, Characterization, and Stabilization of CGO/Al2O3/Pt Nanostructured Composite Powders. Journal of the American Ceramic Society, 2007, 90, 942-949.	1.9	14
105	Ultra-microporous silica membranes for He purification. Desalination, 2006, 200, 89-91.	4.0	4
106	Synthesis and characterisation of proton conducting ceramic membranes. Desalination, 2006, 200, 92-94.	4.0	5
107	Rapid synthesis of oriented silicalite-1 membranes by microwave-assisted hydrothermal treatment. Microporous and Mesoporous Materials, 2006, 92, 259-269.	2.2	84
108	Synthesis and encapsulation of yttria stabilized zirconia particles in supercritical carbon dioxide. Journal of the European Ceramic Society, 2006, 26, 1195-1203.	2.8	18

#	Article	IF	CITATIONS
109	Vacuum seeding and secondary growth route to sodalite membrane. Thin Solid Films, 2006, 495, 92-96.	0.8	26
110	Rapid synthesis of silicalite-1 seeds by microwave assisted hydrothermal treatment. Microporous and Mesoporous Materials, 2005, 80, 73-83.	2.2	86
111	Synthesis and oxygen transport characteristics of dense and porous cerium/gadolinium oxide materials. Catalysis Today, 2005, 104, 120-125.	2.2	22
112	Limitations and potentials of oxygen transport dense and porous ceramic membranes for oxidation reactions. Catalysis Today, 2005, 104, 102-113.	2.2	57
113	Synthesis and properties of MFI zeolite membranes prepared by microwave assisted secondary growth, from microwave derived seeds. Studies in Surface Science and Catalysis, 2005, 158, 129-136.	1.5	6
114	Zeolite membranes – A short overview. Studies in Surface Science and Catalysis, 2005, 157, 135-160.	1.5	16
115	Synthesis of sodalite∫i±Al2O3 composite membranes by microwave heating. Separation and Purification Technology, 2003, 32, 139-149.	3.9	58
116	Characterization of MFI/αAl2O3 and V-MFI/αAl2O3 composite membranes by 129Xe NMR. Separation and Purification Technology, 2003, 32, 165-173.	3.9	5
117	Synthesis of ceria based ion conducting mesoporous membranes by soft-chemistry. Separation and Purification Technology, 2003, 32, 327-333.	3.9	11
118	How can Microwave Heating Contribute to the Development of Zeolite Membranes. Materials Research Society Symposia Proceedings, 2002, 752, 1.	0.1	1
119	Preferential Oxygen Transport in Nanophase Mesoporous Ceramic Ion Conducting Membranes. Materials Research Society Symposia Proceedings, 2002, 752, 1.	0.1	0
120	Evaluation of sol-gel methods for the synthesis of doped-ceria environmental catalysis systems. Part I: preparation of coatings. Journal of the European Ceramic Society, 2002, 22, 15-25.	2.8	38
121	Characterization of thin Co/ZrO2 catalytic films by XPS, SEM and SAM. Surface and Interface Analysis, 2002, 34, 84-87.	0.8	3
122	Synthesis by soft-chemistry and characterization of porous Ce0.9Gd0.1O1.95 ion-conducting membranes. Desalination, 2002, 146, 17-22.	4.0	0
123	Potentiality of organic solvents filtration with ceramic membranes. A comparison with polymer membranes. Desalination, 2002, 147, 275-280.	4.0	71
124	Role of membranes and membrane reactors in the hydrogen supply of fuel cells. Annales De Chimie: Science Des Materiaux, 2001, 26, 79-92.	0.2	8
125	Oxovanadium(V)-1-methoxy-2-propanoxide: synthesis and spectroscopic studies — a molecular precursor for a vanadium–magnesium oxide catalyst. Polyhedron, 2001, 20, 2261-2268.	1.0	5
126	Porous ceramic membranes for catalytic reactors â€" overview and new ideas. Journal of Membrane Science, 2001, 181, 3-20.	4.1	314

#	Article	IF	CITATIONS
127	The chemical valve membrane: a new concept for an auto-regulation of O2 distribution in membrane reactors. Catalysis Today, 2001, 67, 139-149.	2.2	19
128	Evaluation of sol–gel methods for the synthesis of doped-ceria environmental catalysis systems. Applied Catalysis B: Environmental, 2001, 34, 149-159.	10.8	25
129	The application of transient time-lag method for the diffusion coefficient estimation on zeolite composite membranes. Separation and Purification Technology, 2001, 25, 467-474.	3.9	15
130	Synthesis and characterisation of a vanadium-based  chemical valve' membrane. Separation and Purification Technology, 2001, 25, 11-24.	3.9	9
131	Evaluation of porous ceramic membranes as O2 distributors for the partial oxidation of alkanes in inert membrane reactors. Separation and Purification Technology, 2001, 25, 137-149.	3.9	31
132	Characteristics and performance in the oxidative dehydrogenation of propane of MFI and V-MFI zeolite membranes. Catalysis Today, 2000, 56, 199-209.	2.2	74
133	Investigation of sol–gel methods for the synthesis of VPO membrane materials adapted to the partial oxidation of n-butane. Catalysis Today, 2000, 56, 211-220.	2.2	9
134	Inorganic membranes and solid state sciences. Solid State Sciences, 2000, 2, 313-334.	1.5	141
135	Nanophase ceramic ion transport membranes for oxygen separation and gas stream enrichment. Membrane Science and Technology, 2000, 6, 435-471.	0.5	7
136	Synthesis and characterization of a mordenite membrane on an αâ€Al2O3 tubular support. Journal of Materials Chemistry, 2000, 10, 1131-1137.	6.7	34
137	The First Redox Switchable Ceramic Membrane. Journal of the American Chemical Society, 2000, 122, 12592-12593.	6.6	12
138	Oxidative dehydrogenation of propane on V/Al2O3 catalytic membranes. Effect of the type of membrane and reactant feed configuration. Chemical Engineering Science, 1999, 54, 1265-1272.	1.9	37
139	Title is missing!. Journal of Porous Materials, 1999, 6, 41-54.	1.3	15
140	Design of nanosized structures in sol-gel derived porous solids. Applications in catalyst and inorganic membrane preparation. Journal of Materials Chemistry, 1999, 9, 55-65.	6.7	75
141	Influence of the Preparation Variables on the Separative and Catalytic Properties of Ruthenium-Silica Membranes. Studies in Surface Science and Catalysis, 1998, , 205-212.	1.5	1
142	Synthesis and structural study of a tetranuclear magnesium alkoxide: [Mg4(μ3, η2-OR)2 (μ2, η2-OR)4(OR)2] with OR-OCH(CH3)CH2OCH3. Polyhedron, 1997, 16, 587-592.	1.0	20
143	Chapter 4 Methods for the characterisation of porous structure in membrane materials. Membrane Science and Technology, 1996, , 67-118.	0.5	17
144	Potentialities of an Innovative Technique Like 129Xe NMR and of Saxs for the Characterization of Microporous Sol-Gel Derived SiO2. Materials Research Society Symposia Proceedings, 1996, 431, 159.	0.1	O

#	Article	IF	Citations
145	Measurement of the diffusivity of benzene in a microporous membrane by quasi-elastic neutron scattering and NMR pulsed-field gradient technique. Studies in Surface Science and Catalysis, 1995, 98, 204-205.	1.5	0
146	Measurement of the diffusivity of benzene in microporous silica by quasi-elastic neutron scattering and NMR pulsed-field gradient technique. Adsorption, 1995, 1, 197-201.	1.4	13
147	Effect of non-ionic surface active agents on TEOS-derived sols, gels and materials. Journal of Sol-Gel Science and Technology, 1995, 4, 89-97.	1.1	43
148	Mobility of cyclohexane in a microporous silica sample: a quasielastic neutron scattering and NMR pulsed-field gradient technique study. Journal of Membrane Science, 1995, 108, 71-78.	4.1	16
149	Catalytic membrane reactor for oxidative coupling of methane. Part 1: preparation and characterisation of LaOC1 membranes. Catalysis Today, 1995, 25, 225-230.	2.2	19
150	Sol-gel derived silica membranes with tailored microporous structures. Catalysis Today, 1995, 25, 219-224.	2.2	42
151	Catalytic membrane reactor for oxidative coupling of methane. Part II â€"Catalytic properties of LaOCI membranes. Catalysis Today, 1995, 25, 377-383.	2.2	19
152	Porous Pt/SiO2 catalytic membranes prepared using mesitylene solvated Pt atoms as a source of Pt particles. Catalysis Today, 1995, 25, 249-253.	2.2	8
153	Gas-solid oxidations with RuO2î—,TiO2 and RuO2î—,SiO2 membranes. Catalysis Today, 1995, 25, 385-389.	2.2	9
154	Characterization of SiO2 Thin Film Obtained by the Sol-Gel Route from TEOS and Triton X45. Langmuir, 1995, 11, 3970-3974.	1.6	6
155	Sol-gel processing of inorganic membranes. Journal of Sol-Gel Science and Technology, 1994, 2, 483-487.	1.1	13
156	Study of lanthanum-based colloidal sols formation. Journal of Materials Science, 1994, 29, 4244-4251.	1.7	38
157	A microporous zirconia membrane prepared by the solâ€"gel process from zirconyl oxalate. Journal of Membrane Science, 1994, 86, 95-102.	4.1	45
158	Microfiltration through an infiltrated and a noninfiltrated inorganic composite membrane. Journal of Membrane Science, 1994, 97, 127-138.	4.1	9
159	Preparation and Application of Inorganic Membranes. , 1994, , 431-442.		0
160	Computer Simulation of Inorganic Membrane Morphology. Journal of Colloid and Interface Science, 1993, 161, 377-383.	5.0	3
161	Computer Simulation of Inorganic Membrane Morphology. Journal of Colloid and Interface Science, 1993, 161, 384-388.	5.0	7
162	The sol-gel approach to prepare candidate microporous inorganic membranes for membrane reactors. Journal of Membrane Science, 1993, 77, 137-153.	4.1	91

Anne C Julbe

#	Article	lF	CITATION
163	Increasing Permeability of a Composite Inorganic Membrane. Key Engineering Materials, 1992, 61-62, 131-136.	0.4	1
164	Lanthanum Oxychloride Catalytic Membranes. Key Engineering Materials, 1992, 61-62, 65-70.	0.4	3
165	Nanostructures in solâ€"gel derived materials: application to the elaboration of nanofiltration membranes. Journal of Alloys and Compounds, 1992, 188, 8-13.	2.8	12
166	Elaboration and characterization of lead perovskites from colloidal solution. Journal of Non-Crystalline Solids, 1992, 147-148, 74-79.	1.5	3
167	Hydrolysis of mixed titanium and zirconium alkoxides by an esterification reaction. Journal of Solid State Chemistry, 1992, 98, 393-403.	1.4	30
168	Effect of boric acid addition in colloidal sol-gel derived SiC precursors. Materials Research Bulletin, 1990, 25, 601-609.	2.7	29
169	Silica membranes by the sol-gel process. Journal of Membrane Science, 1989, 44, 289-303.	4.1	72
170	Sol-Gel Synthesis Assisted by Supercritical CO ₂ - A Flexible Process for Ceramic Powder and Membrane Preparation. Advances in Science and Technology, 0, , .	0.2	3
171	Nanophased Materials in Supercritical CO2 : Ceramic Nanopowder Synthesis, Encapsulation and Deposition. Ceramic Transactions, 0, , 259-265.	0.1	0