
Kadambot Hm Siddique

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10507209/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial consortium inoculant increases pasture grasses yield in lowâ€phosphorus soil by influencing root morphology, rhizosphere carboxylate exudation and mycorrhizal colonisation. Journal of the Science of Food and Agriculture, 2022, 102, 540-549.	1.7	9
2	Zeolite increases grain yield and potassium balance in paddy fields. Geoderma, 2022, 405, 115397.	2.3	12
3	Biomaterial amendments combined with ridge–furrow mulching improve soil hydrothermal characteristics and wolfberry (Lycium barbarum L.) growth in the Qaidam Basin of China. Agricultural Water Management, 2022, 259, 107213.	2.4	4
4	Assessing the performance of conservation measures for controlling slope runoff and erosion using field scouring experiments. Agricultural Water Management, 2022, 259, 107212.	2.4	11
5	Zeolite increases paddy soil potassium fixation, partial factor productivity, and potassium balance under alternate wetting and drying irrigation. Agricultural Water Management, 2022, 260, 107294.	2.4	13
6	Reduced groundwater use and increased grain production by optimized irrigation scheduling in winter wheat–summer maize double cropping system—A 16-year field study in North China Plain. Field Crops Research, 2022, 275, 108364.	2.3	33
7	Phenology determines water use strategies of three economic tree species in the semi-arid Loess Plateau of China. Agricultural and Forest Meteorology, 2022, 312, 108716.	1.9	22
8	Optimizing nitrogen fertilizer inputs and plant populations for greener wheat production with high yields and high efficiency in dryland areas. Field Crops Research, 2022, 276, 108374.	2.3	13
9	Effect of fertilizer management on the soil bacterial community in agroecosystems across the globe. Agriculture, Ecosystems and Environment, 2022, 326, 107795.	2.5	30
10	Effects of different continuous fertilizer managements on soil total nitrogen stocks in China: A meta-analysis. Pedosphere, 2022, 32, 39-48.	2.1	10
11	Dryland field validation of genotypic variation in salt tolerance of chickpea (Cicer arietinum L.) determined under controlled conditions. Field Crops Research, 2022, 276, 108392.	2.3	5
12	Biochar incorporation increases winter wheat (Triticum aestivum L.) production with significantly improving soil enzyme activities at jointing stage. Catena, 2022, 211, 105979.	2.2	19
13	Effect of different straw returning measures on resource use efficiency and spring maize yield under a plastic film mulch system. European Journal of Agronomy, 2022, 134, 126461.	1.9	16
14	Root physiology and morphology of soybean in relation to stress tolerance. Advances in Botanical Research, 2022, , 77-103.	0.5	2
15	Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant Physiology and Biochemistry, 2022, 178, 55-69.	2.8	76
16	Future climate change impacts on mulched maize production in an arid irrigation area. Agricultural Water Management, 2022, 266, 107550.	2.4	3
17	Interaction between soil water and fertilizer utilization on maize under plastic mulching in an arid irrigation region of China. Agricultural Water Management, 2022, 265, 107494.	2.4	7
18	Plastic film mulching affects field water balance components, grain yield, and water productivity of rainfed maize in the Loess Plateau, China: A synthetic analysis of multi-site observations. Agricultural Water Management, 2022, 266, 107570.	2.4	7

#	Article	IF	CITATIONS
19	Effects of organic amendments and ridge–furrow mulching system on soil properties and economic benefits of wolfberry orchards on the Tibetan Plateau. Science of the Total Environment, 2022, 827, 154317.	3.9	10
20	Response of soil microbial community parameters to plastic film mulch: A meta-analysis. Geoderma, 2022, 418, 115851.	2.3	26
21	Effect of film mulching on crop yield and water use efficiency in drip irrigation systems: A meta-analysis. Soil and Tillage Research, 2022, 221, 105392.	2.6	24
22	Comprehensive transcriptomic analysis of two RIL parents with contrasting salt responsiveness identifies polyadenylated and nonâ€polyadenylated flower lncRNAs in chickpea. Plant Biotechnology Journal, 2022, , .	4.1	2
23	Root penetration ability and plant growth in agroecosystems. Plant Physiology and Biochemistry, 2022, 183, 160-168.	2.8	10
24	Yield and water-use related traits in landrace and new soybean cultivars in arid and semi-arid areas of China. Field Crops Research, 2022, 283, 108559.	2.3	4
25	Ammoniated straw incorporation increases wheat yield, yield stability, soil organic carbon and soil total nitrogen content. Field Crops Research, 2022, 284, 108558.	2.3	30
26	Decreased carbon footprint and increased grain yield under ridge–furrow plastic film mulch with ditch-buried straw returning: A sustainable option for spring maize production in China. Science of the Total Environment, 2022, 838, 156412.	3.9	4
27	Rubber-leguminous shrub systems stimulate soil N2O but reduce CO2 and CH4 emissions. Forest Ecology and Management, 2021, 480, 118665.	1.4	10
28	Quantifying the compensatory effect of increased soil temperature under plastic film mulching on crop growing degree days in a wheat–maize rotation system. Field Crops Research, 2021, 260, 107993.	2.3	16
29	Precipitation dominates the transpiration of both the economic forest (Malus pumila) and ecological forest (Robinia pseudoacacia) on the Loess Plateau after about 15 years of water depletion in deep soil. Agricultural and Forest Meteorology, 2021, 297, 108244.	1.9	38
30	Measurements and modeling of hydrological responses to summer pruning in dryland apple orchards. Journal of Hydrology, 2021, 594, 125651.	2.3	12
31	Root system architecture, physiological and transcriptional traits of soybean (<scp><i>Glycine) Tj ETQq1 1 0.784</i></scp>	1314 rgBT 2.6	/Oyerlock 10
32	Lentil. , 2021, , 408-428.		10
33	Effect of natural factors and management practices on agricultural water use efficiency under drought: A meta-analysis of global drylands. Journal of Hydrology, 2021, 594, 125977.	2.3	26
34	Wheat cultivars with small root length density in the topsoil increased post-anthesis water use and grain yield in the semi-arid region on the Loess Plateau. European Journal of Agronomy, 2021, 124, 126243.	1.9	18
35	Reducing N2O emissions with enhanced efficiency nitrogen fertilizers (EENFs) in a high-yielding spring maize system. Environmental Pollution, 2021, 273, 116422.	3.7	25
36	Photosynthesis, Chlorophyll Fluorescence, and Yield of Peanut in Response to Biochar Application. Frontiers in Plant Science, 2021, 12, 650432.	1.7	25

#	Article	IF	CITATIONS
37	Genome-wide transcriptome analysis and physiological variation modulates gene regulatory networks acclimating salinity tolerance in chickpea. Environmental and Experimental Botany, 2021, 187, 104478.	2.0	17
38	Disruption of carbohydrate and proline metabolism in anthers under low temperature causes pollen sterility in chickpea. Environmental and Experimental Botany, 2021, 188, 104500.	2.0	16
39	Responses of canopy characteristics and water use efficiency to ammoniated straw incorporation for summer maize (Zea mays L.) in the Loess Plateau, China. Agricultural Water Management, 2021, 254, 106948.	2.4	14
40	FOLIAR APPLICATION OF POTASSIUM AND ZINC ENHANCES THE PRODUCTIVITY AND VOLATILE OIL CONTENT OF DAMASK ROSE (Rosa damascena Miller var. trigintipetala Dieck). Acta Scientiarum Polonorum, Hortorum Cultus, 2021, 20, 101-114.	0.3	4
41	Root morphology and rhizosheath acid phosphatase activity in legume and graminoid species respond differently to low phosphorus supply. Rhizosphere, 2021, 19, 100391.	1.4	18
42	Matching fertilization with water availability enhances maize productivity and water use efficiency in a semi-arid area: Mechanisms and solutions. Soil and Tillage Research, 2021, 214, 105164.	2.6	13
43	Benefits and limitations of straw mulching and incorporation on maize yield, water use efficiency, and nitrogen use efficiency. Agricultural Water Management, 2021, 256, 107128.	2.4	45
44	Straw incorporation with ridge–furrow plastic film mulch alters soil fungal community and increases maize yield in a semiarid region of China. Applied Soil Ecology, 2021, 167, 104038.	2.1	20
45	Quantifying the interaction of water and radiation use efficiency under plastic film mulch in winter wheat. Science of the Total Environment, 2021, 794, 148704.	3.9	22
46	Identification and Analysis of Small Interfering RNAs Associated With Heat Stress in Flowering Chinese Cabbage Using High-Throughput Sequencing. Frontiers in Genetics, 2021, 12, 746816.	1,1	3
47	Non-coding RNAs: Functional roles in the regulation of stress response in Brassica crops. Genomics, 2020, 112, 1419-1424.	1.3	32
48	Cold priming the chickpea seeds imparts reproductive cold tolerance by reprogramming the turnover of carbohydrates, osmo-protectants and redox components in leaves. Scientia Horticulturae, 2020, 261, 108929.	1.7	14
49	Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: A global meta-analysis. Agricultural Water Management, 2020, 228, 105906.	2.4	77
50	Effect of traditional soybean breeding on water use strategy in arid and semi-arid areas. European Journal of Agronomy, 2020, 120, 126128.	1.9	12
51	Rainwater collection and infiltration (RWCI) systems promote deep soil water and organic carbon restoration in water-limited sloping orchards. Agricultural Water Management, 2020, 242, 106400.	2.4	19
52	Genetic Dissection and Identification of Candidate Genes for Salinity Tolerance Using Axiom®CicerSNP Array in Chickpea. International Journal of Molecular Sciences, 2020, 21, 5058.	1.8	38
53	Arbuscular Mycorrhizas Regulate Photosynthetic Capacity and Antioxidant Defense Systems to Mediate Salt Tolerance in Maize. Plants, 2020, 9, 1430.	1.6	13
54	How Film Mulch Increases the Corn Yield by Improving the Soil Moisture and Temperature in the Early Growing Period in a Cool, Semi-Arid Area. Agronomy, 2020, 10, 1195.	1.3	6

#	Article	IF	CITATIONS
55	Spatial-temporal distribution of winter wheat (Triticum aestivum L.) roots and water use efficiency under ridge–furrow dual mulching. Agricultural Water Management, 2020, 240, 106301.	2.4	26
56	Drought responses of profile plant-available water and fine-root distributions in apple (Malus pumila) Tj ETQq0 0 137739.	0 rgBT /Ov 3.9	verlock 10 Tf 41
57	Increasing maize production and preventing water deficits in semi-arid areas: A study matching fertilization with regional precipitation under mulch planting. Agricultural Water Management, 2020, 241, 106347.	2.4	21
58	Effect of no-tillage on soil bacterial and fungal community diversity: A meta-analysis. Soil and Tillage Research, 2020, 204, 104721.	2.6	60
59	Combined ditch buried straw return technology in a ridge–furrow plastic film mulch system: Implications for crop yield and soil organic matter dynamics. Soil and Tillage Research, 2020, 199, 104596.	2.6	33
60	Nitrogen, Phosphorus, and Potassium Resorption Responses of Alfalfa to Increasing Soil Water and P Availability in a Semi-Arid Environment. Agronomy, 2020, 10, 310.	1.3	8
61	Potential of herbaceous vegetation as animal feed in semiâ€ a rid Mediterranean saline environments: The case for Tunisia. Agronomy Journal, 2020, 112, 2445-2455.	0.9	9
62	Influence of straw incorporation on soil water utilization and summer maize productivity: A five-year field study on the Loess Plateau of China. Agricultural Water Management, 2020, 233, 106106.	2.4	23
63	Impact of drought on growth, photosynthesis, osmotic adjustment, and cell wall elasticity in Damask rose. Plant Physiology and Biochemistry, 2020, 150, 133-139.	2.8	76
64	Using sorghum to suppress weeds in autumn planted maize. Crop Protection, 2020, 133, 105162.	1.0	14
65	Enhanced efficiency nitrogen fertilizers maintain yields and mitigate global warming potential in an intensified spring wheat system. Field Crops Research, 2019, 244, 107624.	2.3	32
66	The effect of tillage on nitrogen use efficiency in maize (Zea mays L.) in a ridge–furrow plastic film mulch system. Soil and Tillage Research, 2019, 195, 104409.	2.6	15
67	Early Season Drought Largely Reduces Grain Yield in Wheat Cultivars with Smaller Root Systems. Plants, 2019, 8, 305.	1.6	23
68	The conversion of tropical forests to rubber plantations accelerates soil acidification and changes the distribution of soil metal ions in topsoil layers. Science of the Total Environment, 2019, 696, 134082.	3.9	35
69	Integrated model and field experiment to determine the optimum planting density in plastic film mulched rainfed agriculture. Agricultural and Forest Meteorology, 2019, 268, 331-340.	1.9	18
70	Above- and belowground dry matter partitioning of four warm-season annual crops sown on different dates in a semiarid region. European Journal of Agronomy, 2019, 109, 125918.	1.9	12
71	Securing reproductive function in mungbean grown under high temperature environment with exogenous application of proline. Plant Physiology and Biochemistry, 2019, 140, 136-150.	2.8	21
72	Physiological and agronomic approaches for improving water-use efficiency in crop plants. Agricultural Water Management, 2019, 219, 95-108.	2.4	83

#	Article	IF	CITATIONS
73	Influence of rice straw biochar on growth, antioxidant capacity and copper uptake in ramie (Boehmeria nivea L.) grown as forage in aged copper-contaminated soil. Plant Physiology and Biochemistry, 2019, 138, 121-129.	2.8	114
74	Interactive effects of salinity and nitrogen forms on plant growth, photosynthesis and osmotic adjustment in maize. Plant Physiology and Biochemistry, 2019, 139, 171-178.	2.8	99
75	Optimal Wheat Seeding Rate is Influenced by Cultivar‧pecific Topsoil and Subsoil Root Traits. Agronomy Journal, 2019, 111, 3150-3160.	0.9	5
76	Sensitivity of chickpea and faba bean to rootâ€zone hypoxia, elevated ethylene, and carbon dioxide. Plant, Cell and Environment, 2019, 42, 85-97.	2.8	15
77	Desi chickpea genotypes tolerate drought stress better than kabuli types by modulating germination metabolism, trehalose accumulation, and carbon assimilation. Plant Physiology and Biochemistry, 2018, 126, 47-54.	2.8	48
78	Impact of heat stress during seed filling on seed quality and seed yield in lentil (<i>Lens culinaris</i>) Tj ETQqO C	0 rgBT /C	overlock 10 Tf
79	Screening wheat germplasm for seedling root architectural traits under contrasting water regimes: potential sources of variability for drought adaptation. Archives of Agronomy and Soil Science, 2018, 64, 1351-1365.	1.3	35
80	Ex vivo and in vitro assessment of anti-inflammatory activity of seed β-conglutin proteins from Lupinus angustifolius. Journal of Functional Foods, 2018, 40, 510-519.	1.6	22
81	Leaf transpiration plays a role in phosphorus acquisition among a large set of chickpea genotypes. Plant, Cell and Environment, 2018, 41, 2069-2079.	2.8	40
82	Optimum water and nitrogen supply regulates root distribution and produces high grain yields in spring wheat (Triticum aestivum L.) under permanent raised bed tillage in arid northwest China. Soil and Tillage Research, 2018, 181, 117-126.	2.6	23
83	Responses of soil microorganisms, carbon and nitrogen to freeze–thaw cycles in diverse land-use types. Applied Soil Ecology, 2018, 124, 211-217.	2.1	41
84	Alfalfa forage yield, soil water and P availability in response to plastic film mulch and P fertilization in a semiarid environment. Field Crops Research, 2018, 215, 94-103.	2.3	70
85	Application of zinc improves the productivity and biofortification of fine grain aromatic rice grown in dry seeded and puddled transplanted production systems. Field Crops Research, 2018, 216, 53-62.	2.3	93
86	Grazing exclusion—An effective approach for naturally restoring degraded grasslands in Northern China. Land Degradation and Development, 2018, 29, 4439-4456.	1.8	79
87	Phosphorus acquisition and utilisation in crop legumes under global change. Current Opinion in Plant Biology, 2018, 45, 248-254.	3.5	58
88	Changes in the protein and fat contents of peanut (<i>Arachis hypogaea</i> L.) cultivars released in China in the last 60Âyears. Plant Breeding, 2018, 137, 746-756.	1.0	7
89	Ridge-furrow mulching with black plastic film improves maize yield more than white plastic film in dry areas with adequate accumulated temperature. Agricultural and Forest Meteorology, 2018, 262, 206-214.	1.9	85
90	Characterization of Root and Shoot Traits in Wheat Cultivars with Putative Differences in Root System Size. Agronomy, 2018, 8, 109.	1.3	48

#	Article	IF	CITATIONS
91	Effect of zeolite application on phenology, grain yield and grain quality in rice under water stress. Agricultural Water Management, 2018, 206, 241-251.	2.4	38
92	Response of chickpea (<i>Cicer arietinum</i> L) to terminal drought: leaf stomatal conductance, pod abscisic acid concentration, and seed set. Journal of Experimental Botany, 2017, 68, erw153.	2.4	67
93	Characterising root trait variability in chickpea (<i>Cicer arietinum</i> L.) germplasm. Journal of Experimental Botany, 2017, 68, erw368.	2.4	57
94	Reserving winter snow for the relief of spring drought by film mulching in northeast China. Field Crops Research, 2017, 209, 58-64.	2.3	25
95	Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology and Biochemistry, 2017, 118, 199-217.	2.8	171
96	Thermal stress impacts reproductive development and grain yield in rice. Plant Physiology and Biochemistry, 2017, 115, 57-72.	2.8	146
97	Vegetative and reproductive growth of salt-stressed chickpea are carbon-limited: sucrose infusion at the reproductive stage improves salt tolerance. Journal of Experimental Botany, 2017, 68, 2001-2011.	2.4	54
98	Seed priming improves chilling tolerance in chickpea by modulating germination metabolism, trehalose accumulation and carbon assimilation. Plant Physiology and Biochemistry, 2017, 111, 274-283.	2.8	77
99	Using Sorghum to suppress weeds in dry seeded aerobic and puddled transplanted rice. Field Crops Research, 2017, 214, 211-218.	2.3	22
100	The trade-off in the establishment of artificial plantations by evaluating soil properties at the margins of oases. Catena, 2017, 157, 363-371.	2.2	10
101	Effects of Drought Stress on Morphophysiological Traits, Biochemical Characteristics, Yield, and Yield Components in Different Ploidy Wheat. Advances in Agronomy, 2017, , 139-173.	2.4	42
102	Nature's pulse power: legumes, food security and climate change. Journal of Experimental Botany, 2017, 68, 1815-1818.	2.4	97
103	Facility Cultivation Systems "设施农业â€ŧ A Chinese Model for the Planet. Advances in Agronomy, 20	172,445, 1	-4124
104	Root trait diversity, molecular marker diversity, and trait-marker associations in a core collection of <i>Lupinus angustifolius </i> . Journal of Experimental Botany, 2016, 67, 3683-3697.	2.4	20
105	Forage yield, soil water depletion, shoot nitrogen and phosphorus uptake and concentration, of young and old stands of alfalfa in response to nitrogen and phosphorus fertilisation in a semiarid environment. Field Crops Research, 2016, 198, 247-257.	2.3	52
106	Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agricultural and Forest Meteorology, 2016, 228-229, 42-51.	1.9	126
107	Distribution of soil carbon and grain yield of spring wheat under a permanent raised bed planting system in an arid area of northwest China. Soil and Tillage Research, 2016, 163, 274-281.	2.6	14
108	Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food and Agriculture, 2016, 2, .	0.6	106

#	Article	IF	CITATIONS
109	Multi-site assessment of the effects of plastic-film mulch on dryland maize productivity in semiarid areas in China. Agricultural and Forest Meteorology, 2016, 220, 160-169.	1.9	117
110	Does Plastic Mulch Improve Crop Yield in Semiarid Farmland at High Altitude?. Agronomy Journal, 2015, 107, 1724-1732.	0.9	36
111	Physiological and morphological adaptations of herbaceous perennial legumes allow differential access to sources of varyingly soluble phosphate. Physiologia Plantarum, 2015, 154, 511-525.	2.6	30
112	Two key genomic regions harbour QTLs for salinity tolerance in ICCV 2 × JG 11 derived chickpea (Cicer)	Tj ETQq0 1.6	0 0 rgBT /O 67
113	Salt sensitivity in chickpea: Growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes. Journal of Plant Physiology, 2015, 182, 1-12.	1.6	92
114	Wheat yield improvements in China: Past trends and future directions. Field Crops Research, 2015, 177, 117-124.	2.3	96
115	Maize yield and water balance is affected by nitrogen application in a film-mulching ridge–furrow system in a semiarid region of China. European Journal of Agronomy, 2014, 52, 103-111.	1.9	116
116	Reprint of "Contrasting stomatal regulation and leaf ABA concentrations in wheat genotypes when split root systems were exposed to terminal drought― Field Crops Research, 2014, 165, 5-14.	2.3	12
117	Root architecture alteration of narrow-leafed lupin and wheat in response to soil compaction. Field Crops Research, 2014, 165, 61-70.	2.3	77
118	Contrasting stomatal regulation and leaf ABA concentrations in wheat genotypes when split root systems were exposed to terminal drought. Field Crops Research, 2014, 162, 77-86.	2.3	36
119	Water-Saving Innovations in Chinese Agriculture. Advances in Agronomy, 2014, , 149-201.	2.4	120
120	Effects of water management with plastic film in a semi-arid agricultural system on available soil carbon fractions. European Journal of Soil Biology, 2013, 57, 9-12.	1.4	38
121	Ridge-Furrow Mulching Systems—An Innovative Technique for Boosting Crop Productivity in Semiarid Rain-Fed Environments. Advances in Agronomy, 2013, , 429-476.	2.4	453
122	Yield-increase effects via improving soil phosphorus availability by applying K2SO4 fertilizer in calcareous–alkaline soils in a semi-arid agroecosystem. Field Crops Research, 2013, 144, 69-76.	2.3	12
123	Effect of organic manure and fertilizer on soil water and crop yields in newly-built terraces with loess soils in a semi-arid environment. Agricultural Water Management, 2013, 117, 123-132.	2.4	111
124	Soil P availability, inorganic P fractions and yield effect in a calcareous soil with plastic-film-mulched spring wheat. Field Crops Research, 2012, 137, 221-229.	2.3	28
125	Comparative Proteomic Analysis of Genotypic Variation in Germination and Early Seedling Growth of Chickpea under Suboptimal Soil–Water Conditions. Journal of Proteome Research, 2012, 11, 4289-4307.	1.8	10
126	Heat Stress in Wheat during Reproductive and Grain-Filling Phases. Critical Reviews in Plant Sciences, 2011, 30, 491-507.	2.7	686

#	Article	IF	CITATIONS
127	Salt sensitivity of the vegetative and reproductive stages in chickpea (Cicer arietinum L.): Podding is a particularly sensitive stage. Environmental and Experimental Botany, 2011, 71, 260-268.	2.0	86
128	The role of allelopathy in agricultural pest management. Pest Management Science, 2011, 67, 493-506.	1.7	303
129	Rice direct seeding: Experiences, challenges and opportunities. Soil and Tillage Research, 2011, 111, 87-98.	2.6	443
130	A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics, 2009, 10, 523.	1.2	199
131	Productivity and water use of alfalfa and subsequent crops in the semiarid Loess Plateau with different stand ages of alfalfa and crop sequences. Field Crops Research, 2009, 114, 58-65.	2.3	51