Kan Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10507192/publications.pdf Version: 2024-02-01

KANLIN

#	Article	IF	CITATIONS
1	Optical coherence tomography-guided confocal Raman microspectroscopy for rapid measurements in tissues. Biomedical Optics Express, 2022, 13, 344.	2.9	2
2	Label-Free Follow-Up Surveying of Post-Treatment Efficacy and Recurrence in Nasopharyngeal Carcinoma Patients with Fiberoptic Raman Endoscopy. Analytical Chemistry, 2021, 93, 2053-2061.	6.5	14
3	Deep Learning-Guided Fiberoptic Raman Spectroscopy Enables Real-Time <i>In Vivo</i> Diagnosis and Assessment of Nasopharyngeal Carcinoma and Post-treatment Efficacy during Endoscopy. Analytical Chemistry, 2021, 93, 10898-10906.	6.5	20
4	Advances in realâ€ŧime fiberâ€optic Raman spectroscopy for early cancer diagnosis: Pushing the frontier into clinical endoscopic applications. Translational Biophotonics, 2021, 3, e202000018.	2.7	32
5	Fiber-Optic Raman Spectroscopy with Nature-Inspired Genetic Algorithms Enhances Real-Time in Vivo Detection and Diagnosis of Nasopharyngeal Carcinoma. Analytical Chemistry, 2019, 91, 8101-8108.	6.5	31
6	Characterizing biochemical and morphological variations of clinically relevant anatomical locations of oral tissue in vivo with hybrid Raman spectroscopy and optical coherence tomography technique. Journal of Biophotonics, 2018, 11, e201700113.	2.3	12
7	Epi-Detected Hyperspectral Stimulated Raman Scattering Microscopy for Label-Free Molecular Subtyping of Glioblastomas. Analytical Chemistry, 2018, 90, 10249-10255.	6.5	36
8	Real-time In vivo Diagnosis of Nasopharyngeal Carcinoma Using Rapid Fiber-Optic Raman Spectroscopy. Theranostics, 2017, 7, 3517-3526.	10.0	46
9	Real time near-infrared Raman spectroscopy for the diagnosis of nasopharyngeal cancer. Oncotarget, 2017, 8, 49443-49450.	1.8	21
10	Real-time in vivo diagnosis of laryngeal carcinoma with rapid fiber-optic Raman spectroscopy. Biomedical Optics Express, 2016, 7, 3705.	2.9	33
11	Simultaneous fingerprint and highâ€wavenumber fiberâ€optic Raman spectroscopy enhances realâ€ŧime <i>in vivo</i> diagnosis of adenomatous polyps during colonoscopy. Journal of Biophotonics, 2016, 9, 333-342.	2.3	79
12	Rapid Fiber-optic Raman Spectroscopy for Real-Time <i>In Vivo</i> Detection of Gastric Intestinal Metaplasia during Clinical Gastroscopy. Cancer Prevention Research, 2016, 9, 476-483.	1.5	45
13	Integrated Mueller-matrix near-infrared imaging and point-wise spectroscopy improves colonic cancer detection. Biomedical Optics Express, 2016, 7, 1116.	2.9	25
14	Development of a hybrid Raman spectroscopy and optical coherence tomography technique for real-time in vivo tissue measurements. Optics Letters, 2016, 41, 3045.	3.3	25
15	Endoscope-based beveled and volume fiber-optic Raman probes for in vivo diagnosis of gastric dysplasia: a comparative study. , 2016, , .		0
16	Simultaneous fingerprint and high-wavenumber fiber-optic Raman endoscopy for <i>in vivo</i> diagnosis of laryngeal cancer. Proceedings of SPIE, 2016, , .	0.8	3
17	Fiber-optic Raman spectroscopy for in vivo diagnosis of gastric dysplasia. Faraday Discussions, 2016, 187, 377-392.	3.2	33
18	Simultaneous fingerprint and high-wavenumber fiber-optic Raman spectroscopy improves in vivo diagnosis of esophageal squamous cell carcinoma at endoscopy. Scientific Reports, 2015, 5, 12957.	3.3	46

Kan Lin

#	Article	IF	CITATIONS
19	Comparative study of the endoscope-based bevelled and volume fiber-optic Raman probes for optical diagnosis of gastric dysplasia in vivo at endoscopy. Analytical and Bioanalytical Chemistry, 2015, 407, 8303-8310.	3.7	40
20	A novel broadband Raman endoscopy for <i>in vivo</i> diagnosis of intestinal metaplasia in the stomach. Proceedings of SPIE, 2015, , .	0.8	0
21	Characterizing Variability of In Vivo Raman Spectroscopic Properties of Different Anatomical Sites of Normal Colorectal Tissue towards Cancer Diagnosis at Colonoscopy. Analytical Chemistry, 2015, 87, 960-966.	6.5	62
22	<i>In vivo</i> , real-time, transnasal, image-guided Raman endoscopy: defining spectral properties in the nasopharynx and larynx. Journal of Biomedical Optics, 2012, 17, 0770021.	2.6	32
23	Detection of malignant lesions in vivo in the upper gastrointestinal tract using image-guided Raman endoscopy. , 2012, , .		0
24	Optical diagnosis of laryngeal cancer using high wavenumber Raman spectroscopy. Biosensors and Bioelectronics, 2012, 35, 213-217.	10.1	66
25	<i>In vivo</i> diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques. International Journal of Cancer, 2011, 128, 2673-2680.	5.1	97
26	Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer. Biosensors and Bioelectronics, 2011, 26, 4104-4110.	10.1	89
27	Characterizing variability in in vivo Raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection. Journal of Biomedical Optics, 2011, 16, 037003.	2.6	94
28	Multimodal endoscopic imaging and Raman spectroscopy for improving in vivo diagnosis of gastric malignancies during clinical gastroscopy. Proceedings of SPIE, 2010, , .	0.8	0
29	In vivo detection of epithelial neoplasia in the stomach using image-guided Raman endoscopy. Biosensors and Bioelectronics, 2010, 26, 383-389.	10.1	90
30	Integrated autofluorescence endoscopic imaging and point-wise spectroscopy for real-time in vivo tissue measurements. Journal of Biomedical Optics, 2010, 15, 1.	2.6	9
31	Image-Guided Raman Spectroscopy For In Vivo Diagnosis of Gastric Precancer At Gastroscopy. , 2010, , .		0
32	Raman endoscopy for in vivo differentiation between benign and malignant ulcers in the stomach. Analyst, The, 2010, 135, 3162.	3.5	86
33	In vivo Raman spectroscopy integrated with multimodal endoscopic imaging for early diagnosis of gastric dysplasia. , 2010, , .		3
34	In vivo early diagnosis of gastric dysplasia using narrow-band image-guided Raman endoscopy. Journal of Biomedical Optics, 2010, 15, 037017.	2.6	77
35	Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy. Optics Letters, 2009, 34, 758.	3.3	120