
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10506318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electric-field effects on the competition between polarons and bipolarons in conjugated polymers. Physical Review B, 2000, 61, 10777-10781.	1.1	83
2	Dynamical evolution of polaron to bipolaron in conjugated polymers. Physical Review B, 2006, 74, .	1.1	53
3	Effects of temperature and electric field induced phase transitions on the dynamics of polarons and bipolarons. New Journal of Chemistry, 2013, 37, 2829.	1.4	48
4	Transport of Polarons in Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2015, 6, 510-514.	2.1	41
5	Critical temperature and products of intrachain polaron recombination in conjugated polymers. Physical Chemistry Chemical Physics, 2014, 16, 17072-17080.	1.3	34
6	Carbon dioxide adsorption on doped boron nitride nanotubes. RSC Advances, 2014, 4, 28249-28258.	1.7	34
7	Use of polarons and bipolarons in logical switches based on conjugated polymers. Physical Review B, 2002, 65, .	1.1	33
8	Dynamics of solitons in polyacetylene with interchain coupling. Physical Review B, 1993, 47, 12568-12577.	1.1	29
9	Impurity effects on polaron dynamics in graphene nanoribbons. Carbon, 2015, 91, 171-177.	5.4	26
10	Theoretical Temperature Dependence of the Charge-Carrier Mobility in Semiconducting Polymers. Journal of Physical Chemistry A, 2009, 113, 14591-14594.	1.1	24
11	Dynamics of charge carriers on hexagonal nanoribbons with vacancy defects. Physical Review B, 2016, 94, .	1.1	21
12	Dynamics of charge transfer in molecular switches. Synthetic Metals, 1997, 87, 249-256.	2.1	20
13	Dynamical Study of Impurity Effects on Bipolaron–Bipolaron and Bipolaron–Polaron Scattering in Conjugated Polymers. Journal of Physical Chemistry B, 2013, 117, 11801-11811.	1.2	20
14	Impact of the Electron–Phonon Interactions on the Polaron Dynamics in Graphene Nanoribbons. Journal of Physical Chemistry A, 2016, 120, 4901-4906.	1.1	19
15	Impurity effects on polaron-exciton formation in conjugated polymers. Journal of Chemical Physics, 2013, 139, 174903.	1.2	18
16	Estimating correlation energy of diatomic molecules and atoms with neural networks. Journal of Computational Chemistry, 1997, 18, 1407-1414.	1.5	17
17	Theoretical calculations of a new potential energy surface for the H + Li2 reaction. Chemical Physics Letters, 2010, 490, 123-126.	1.2	16
18	Molecular Dynamics Investigation of Charge Carrier Density Influence over Mobility in Conjugated Polymers. Journal of Physical Chemistry A, 2009, 113, 14975-14978.	1.1	15

#	Article	IF	CITATIONS
19	Predicting the equilibrium structure of organic semiconductors with genetic algorithms. Chemical Physics Letters, 2013, 555, 168-172.	1.2	15
20	Influence of quasi-particle density over polaron mobility in armchair graphene nanoribbons. Physical Chemistry Chemical Physics, 2018, 20, 16712-16718.	1.3	15
21	Ultrafast direct generation of quasiparticles in graphene nanoribbons. Carbon, 2020, 158, 553-558.	5.4	15
22	Fitting potential energy surface of reactive systems via genetic algorithm. International Journal of Quantum Chemistry, 2006, 106, 2650-2657.	1.0	14
23	The H + Li2 bimolecular exchange reaction: Dynamical and kinetical properties at J = 0. Journal of Chemical Physics, 2012, 136, 134319.	1.2	14
24	Bipolaron Dynamics in Graphene Nanoribbons. Scientific Reports, 2019, 9, 2909.	1.6	14
25	Dynamics of charge transfer in molecular switches II. Effective potentials and Coulomb interaction. Synthetic Metals, 1998, 97, 195-203.	2.1	13
26	Spectroscopic properties of the molecular ion in the 8kï€, 9kïƒ, 9lï€, 9lïƒ and 10oïƒ electronic states. Journal of Molecular Spectroscopy, 2012, 273, 26-29.	0.4	13
27	Reactive Scattering between Excitons and Charge Carriers in Conjugated Polymers. Journal of Physical Chemistry C, 2014, 118, 23451-23458.	1.5	13
28	Fast predictions of exciton diffusion length in organic materials. Journal of Materials Chemistry C, 2019, 7, 4066-4071.	2.7	13
29	Temperature effects on polaron stability in polyacetylene. International Journal of Quantum Chemistry, 2008, 108, 2448-2453.	1.0	12
30	Temperature effects on intrachain recombination of bipolarons in conjugated polymers. Chemical Physics Letters, 2014, 614, 151-155.	1.2	12
31	Temperature Effects on the Scattering of Polarons and Bipolarons in Organic Conductors. Journal of Physical Chemistry A, 2014, 118, 6272-6277.	1.1	11
32	Dynamics of polarons and bipolarons with interchain coupling in conjugated polymers. International Journal of Quantum Chemistry, 2003, 95, 153-158.	1.0	10
33	Limit of Exciton Diffusion in Highly Ordered π-Conjugated Systems. Journal of Physical Chemistry C, 2015, 119, 19654-19659.	1.5	10
34	Tuning the electronic structure properties of MoS ₂ monolayers with carbon doping. Physical Chemistry Chemical Physics, 2019, 21, 11168-11174.	1.3	10
35	Smooth gap tuning strategy for cove-type graphene nanoribbons. RSC Advances, 2020, 10, 26937-26943.	1.7	10
36	A genetic algorithm to build diatomic potentials. Computational and Theoretical Chemistry, 2006, 769, 47-51.	1.5	9

#	Article	IF	CITATIONS
37	Bond length pattern associated with charge carriers in armchair graphene nanoribbons. Journal of Molecular Modeling, 2017, 23, 293.	0.8	9
38	Stationary polaron properties in organic crystalline semiconductors. Physical Chemistry Chemical Physics, 2019, 21, 2727-2733.	1.3	9
39	Modeling Polaron Diffusion in Oligoacene-like Crystals. Journal of Physical Chemistry C, 2019, 123, 4715-4720.	1.5	9
40	Singlet–Singlet Exciton Recombination: Theoretical Insight into the Influence of High Density Regime of Excitons in Conjugated Polymers. Journal of Physical Chemistry B, 2014, 118, 5250-5257.	1.2	8
41	Spin-Orbit Effects on the Dynamical Properties of Polarons in Graphene Nanoribbons. Scientific Reports, 2018, 8, 1914.	1.6	8
42	Stability conditions of armchair graphene nanoribbon bipolarons. Journal of Molecular Modeling, 2019, 25, 245.	0.8	8
43	Same Charge Polaron and Bipolaron Scattering on Conducting Polymers. Journal of Physical Chemistry A, 2019, 123, 1319-1327.	1.1	8
44	Quasiparticle description of transition metal dichalcogenide nanoribbons. Physical Review B, 2019, 99,	1.1	8
45	Transport of quasiparticles in coronene-based graphene nanoribbons. Journal of Materials Chemistry C, 2020, 8, 12100-12107.	2.7	8
46	Charge transport in cove-type graphene nanoribbons: The role of quasiparticles. Synthetic Metals, 2022, 287, 117056.	2.1	8
47	Dynamical properties and thermal rate coefficients for the <i>Na + HF</i> reaction using genetic algorithm. International Journal of Quantum Chemistry, 2010, 110, 1070-1079.	1.0	7
48	Supersonic quasi-particles dynamics in organic semiconductors. Chemical Physics Letters, 2012, 550, 146-149.	1.2	7
49	Concentration effects on intrachain polaron recombination in conjugated polymers. Physical Chemistry Chemical Physics, 2015, 17, 1299-1308.	1.3	7
50	Low-Temperature Seebeck Coefficients for Polaron-Driven Thermoelectric Effect in Organic Polymers. Journal of Physical Chemistry A, 2016, 120, 4923-4927.	1.1	7
51	Stationary and Dynamical Properties of Polarons in Anisotropic C ₆₀ -Crystals. Journal of Physical Chemistry C, 2019, 123, 13410-13418.	1.5	7
52	Electron-phonon coupling in armchair silicene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125954.	0.9	6
53	Concentration effects on the thermally-activated transport of polarons in conducting polymers. Chemical Physics Letters, 2019, 716, 162-166.	1.2	6
54	Dynamics of conformational defects in poly(3-hexyl)thiophene. Physical Review B, 1996, 53, 7222-7226.	1.1	5

#	Article	IF	CITATIONS
55	Investigating charge transport in molecular switches with neural networks. Journal of Computational Chemistry, 1999, 20, 1060-1066.	1.5	5
56	Polaron stability under collision with different defects in conjugated polymers. International Journal of Quantum Chemistry, 2006, 106, 2603-2608.	1.0	5
57	Interchain interaction effects on polaron–bipolaron transition on conducting polymers. Journal of Materials Science, 2008, 43, 585-590.	1.7	5
58	Charge Carrier Scattering in Polymers: A New Neutral Coupled Soliton Channel. Scientific Reports, 2018, 8, 6595.	1.6	5
59	Effective Mass of Quasiparticles in Armchair Graphene Nanoribbons. Scientific Reports, 2019, 9, 17990.	1.6	5
60	Charge localization and hopping in a topologically engineered graphene nanoribbon. Scientific Reports, 2021, 11, 5142.	1.6	5
61	Collisions of solitons in polyacetylene. Computational and Theoretical Chemistry, 1997, 394, 161-167.	1.5	4
62	Dynamic interaction between polarons and torsional vibrations in conjugated polymers. International Journal of Quantum Chemistry, 2005, 103, 604-609.	1.0	4
63	Transition of polaron to bipolaron structure in conjugated polymers. Computational and Theoretical Chemistry, 2008, 852, 15-21.	1.5	4
64	Thermal Rate Constant Calculation of the NF + F Reactive System Multiple Arrangements. Journal of Physical Chemistry A, 2011, 115, 8248-8254.	1.1	4
65	Polaron and bipolaron stability on paraphenylene polymers. Journal of Molecular Modeling, 2017, 23, 59.	0.8	4
66	Bipolaron assisted Bloch-like oscillations in organic lattices. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1915-1919.	0.9	4
67	Quasiparticle dynamics by effective \$\$pi \$\$-field distortion. Scientific Reports, 2022, 12, 7967.	1.6	4
68	Linking model Hamiltonians to ab initio and semiempirical methods in descriptions of impurities in conjugated polymers. International Journal of Quantum Chemistry, 2005, 103, 537-542.	1.0	3
69	Effects of impurities on polaron dynamics in conjugated polymers: Effective potentials. International Journal of Quantum Chemistry, 2006, 106, 2597-2602.	1.0	3
70	Dynamics of photoexcitations with interchain coupling in conjugated polymers. International Journal of Quantum Chemistry, 2008, 108, 2442-2447.	1.0	3
71	Photo-generation of polaron pairs in coupled chains of polyacetylene. Computational and Theoretical Chemistry, 2008, 852, 11-14.	1.5	3
72	A Computational Investigation of the Multiple Channels of the NF2 + F Reaction. Journal of Physical Chemistry A, 2009, 113, 14336-14342.	1.1	3

#	Article	IF	CITATIONS
73	Bloch oscillations in organic and inorganic polymers. Journal of Chemical Physics, 2017, 146, 144903.	1.2	3
74	Dynamical Mechanism of Polarons and Bipolarons in Poly(p-Phenylene Vinylene). Scientific Reports, 2019, 9, 18131.	1.6	3
75	Charge Transport Mechanism in Chevron-Graphene Nanoribbons. Journal of Physical Chemistry C, 2020, 124, 22392-22398.	1.5	3
76	A moving soliton in the TLM model. Synthetic Metals, 1991, 43, 3713-3716.	2.1	2
77	Nonlinear excitations dynamics in molecular switches. Synthetic Metals, 1997, 86, 2245-2246.	2.1	2
78	Interaction of Torsional Oscillations with Polarons and Bipolarons in Conjugated Polymer. Synthetic Metals, 2005, 153, 493-496.	2.1	2
79	Chain length effects on nonlinear excitation transitions in transâ€polyacetylene. International Journal of Quantum Chemistry, 2008, 108, 2507-2511.	1.0	2
80	<i>>H</i> ₂ ⁺ dynamical properties in the electronic states 7 <i>j</i> Ïf, 8 <i>j</i> Ïf, 8 <i>k</i> Ïf, 7 <i>i</i> I€, and 8 <i>j</i> p. International Journal of Quantum Chemistry, 2011, 111, 1316-1320.	1.0	2
81	Influence of bipolaron density on the transport properties of thermalized organic conductors. International Journal of Quantum Chemistry, 2013, 113, 2540-2545.	1.0	2
82	Electron–phonon coupling effects on intrachain polaron recombination in conjugated polymers. Journal of Molecular Modeling, 2017, 23, 42.	0.8	2
83	Polaron properties in 2D organic molecular crystals: directional dependence of non-local electron–phonon coupling. Journal of Molecular Modeling, 2019, 25, 149.	0.8	2
84	Quantum bits with polyacetylene. Journal of Computational Chemistry, 2002, 23, 870-873.	1.5	1
85	Polyacetylene as a qubit system. International Journal of Quantum Chemistry, 2003, 95, 224-229.	1.0	1
86	Structural phases of coupled polyacetylene chains with impurities. International Journal of Quantum Chemistry, 2005, 103, 597-603.	1.0	1
87	Quantum-controlled NOT gate made of coupled polyacetylene chains. International Journal of Quantum Chemistry, 2005, 103, 543-549.	1.0	1
88	An extensive investigation of reactions involved in the nitrogen trifluoride dissociation. New Journal of Chemistry, 2013, 37, 3244.	1.4	1
89	Dynamic Formation of Bipolaron–Exciton Complexes in Conducting Polymers. Journal of Physical Chemistry A, 2018, 122, 3866-3872.	1.1	1
90	Structure of the Moving Solitonin the TLM Model. Journal of the Physical Society of Japan, 1993, 62, 2745-2756.	0.7	0

#	Article	IF	CITATIONS
91	Impurity effects on solitons in conjugated polymer linking model hamiltonians and ab initio method descriptions. Computational and Theoretical Chemistry, 2006, 769, 33-37.	1.5	0
92	Dynamics Simulation of Conducting Polymer Interchain Interaction Effects on Polaron Transition. Lecture Notes in Computer Science, 2007, , 304-311.	1.0	0
93	Influence of the photoexcitation process on the dynamics of triplet excitons in organic polymers. Computational and Theoretical Chemistry, 2013, 1018, 91-94.	1.1	Ο