Jason K Kirby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10505553/publications.pdf Version: 2024-02-01

LASON K KIDBY

#	Article	IF	CITATIONS
1	Intensive cycling of nickel in a New Caledonian forest dominated by hyperaccumulator trees. Plant Journal, 2021, 107, 1040-1055.	2.8	6
2	lsotopic signatures reveal zinc cycling in the natural habitat of hyperaccumulator Dichapetalum gelonioides subspecies from Malaysian Borneo. BMC Plant Biology, 2021, 21, 437.	1.6	2
3	Potential carcinogenic and non-carcinogenic health hazards of metal(loid)s in food grains. Environmental Science and Pollution Research, 2020, 27, 17032-17042.	2.7	15
4	Microplastics in municipal mixed-waste organic outputs induce minimal short to long-term toxicity in key terrestrial biota. Environmental Pollution, 2019, 252, 522-531.	3.7	175
5	Optimisation of phosphate loading on graphene oxide–Fe(<scp>iii</scp>) composites – possibilities for engineering slow release fertilisers. New Journal of Chemistry, 2019, 43, 8580-8589.	1.4	6
6	Graphene oxide-Fe(III) composite containing phosphate – A novel slow release fertilizer for improved agriculture management. Journal of Cleaner Production, 2018, 185, 97-104.	4.6	73
7	Ecotoxicology of manufactured graphene oxide nanomaterials and derivation of preliminary guideline values for freshwater environments. Environmental Toxicology and Chemistry, 2018, 37, 1340-1348.	2.2	22
8	Fate of radiolabeled C60 fullerenes in aged soils. Environmental Pollution, 2017, 221, 293-300.	3.7	9
9	Complementary Imaging of Silver Nanoparticle Interactions with Green Algae: Dark-Field Microscopy, Electron Microscopy, and Nanoscale Secondary Ion Mass Spectrometry. ACS Nano, 2017, 11, 10894-10902.	7.3	54
10	Gold Nanomaterial Uptake from Soil Is Not Increased by Arbuscular Mycorrhizal Colonization of Solanum Lycopersicum (Tomato). Nanomaterials, 2016, 6, 68.	1.9	8
11	Aseptic hydroponics to assess rhamnolipid-Cd and rhamnolipid-Zn bioavailability for sunflower (Helianthus annuus): a phytoextraction mechanism study. Environmental Science and Pollution Research, 2016, 23, 21327-21335.	2.7	7
12	Fullerol as a Potential Pathway for Mineralization of Fullerene Nanoparticles in Biosolid-Amended Soils. Environmental Science and Technology Letters, 2016, 3, 7-12.	3.9	19
13	Quantifying the Sensitivity of Soil Microbial Communities to Silver Sulfide Nanoparticles Using Metagenome Sequencing. PLoS ONE, 2016, 11, e0161979.	1.1	41
14	Influence of soil properties and soil leaching on the toxicity of ionic silver to plants. Environmental Toxicology and Chemistry, 2015, 34, 2503-2512.	2.2	24
15	GEMAS: Prediction of solidâ€solution phase partitioning coefficients (<i>K</i> _d) for oxoanions and boric acid in soils using midâ€infrared diffuse reflectance spectroscopy. Environmental Toxicology and Chemistry, 2015, 34, 235-246.	2.2	7
16	Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil. PLoS ONE, 2015, 10, e0126275.	1.1	82
17	Complexation of silver and dissolved organic matter in soil water extracts. Environmental Pollution, 2015, 199, 174-184.	3.7	23
18	DNA Melting and Genotoxicity Induced by Silver Nanoparticles and Graphene. Chemical Research in Toxicology, 2015, 28, 1023-1035.	1.7	73

JASON K KIRBY

#	Article	IF	CITATIONS
19	Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake. Journal of Hazardous Materials, 2015, 300, 788-795.	6.5	98
20	Thermostability and reversibility of silver nanoparticle–protein binding. Physical Chemistry Chemical Physics, 2015, 17, 1728-1739.	1.3	30
21	The effect of soil properties on the toxicity of silver to the soil nitrification process. Environmental Toxicology and Chemistry, 2014, 33, 1170-1178.	2.2	23
22	Copper Isotope Fractionation during Equilibration with Natural and Synthetic Ligands. Environmental Science & Technology, 2014, 48, 8620-8626.	4.6	74
23	Remobilisation of silver and silver sulphide nanoparticles in soils. Environmental Pollution, 2014, 193, 102-110.	3.7	36
24	Contrasting Effects of Nanoparticle Binding on Protein Denaturation. Journal of Physical Chemistry C, 2014, 118, 22069-22078.	1.5	30
25	Fate and lability of silver in soils: Effect of ageing. Environmental Pollution, 2014, 191, 151-157.	3.7	56
26	A method to determine silver partitioning and lability in soils. Environmental Chemistry, 2014, 11, 63.	0.7	8
27	Fate and Risks of Nanomaterials in Aquatic and Terrestrial Environments. Accounts of Chemical Research, 2013, 46, 854-862.	7.6	520
28	Transformation of PVP coated silver nanoparticles in a simulated wastewater treatment process and the effect on microbial communities. Chemistry Central Journal, 2013, 7, 46.	2.6	100
29	Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms. New Phytologist, 2013, 199, 367-378.	3.5	133
30	Transport of silver nanoparticles in saturated columns of natural soils. Science of the Total Environment, 2013, 463-464, 120-130.	3.9	196
31	Behaviour of fullerenes (C60) in the terrestrial environment: Potential release from biosolids-amended soils. Journal of Hazardous Materials, 2013, 262, 496-503.	6.5	27
32	Characterization and ecological risk assessment of nanoparticulate CeO ₂ as a diesel fuel catalyst. Environmental Toxicology and Chemistry, 2013, 32, 1896-1905.	2.2	35
33	A stableâ€isotope methodology for measurement of soilâ€applied zincâ€fertilizer recovery in durum wheat (<i>Triticum durum</i>). Journal of Plant Nutrition and Soil Science, 2013, 176, 756-763.	1.1	9
34	Retention and Dissolution of Engineered Silver Nanoparticles in Natural Soils. Soil Science Society of America Journal, 2012, 76, 891-902.	1.2	165
35	Dissolution Kinetics of Macronutrient Fertilizers Coated with Manufactured Zinc Oxide Nanoparticles. Journal of Agricultural and Food Chemistry, 2012, 60, 3991-3998.	2.4	191
36	Aging effects on molybdate lability in soils. Chemosphere, 2012, 89, 876-883.	4.2	16

JASON K KIRBY

#	Article	IF	CITATIONS
37	Selenate-Enriched Urea Granules Are a Highly Effective Fertilizer for Selenium Biofortification of Paddy Rice Grain. Journal of Agricultural and Food Chemistry, 2012, 60, 6037-6044.	2.4	65
38	Solubility and Batch Retention of CeO ₂ Nanoparticles in Soils. Environmental Science & Technology, 2011, 45, 2777-2782.	4.6	190
39	Cobalt Distribution and Speciation: Effect of Aging, Intermittent Submergence, In Situ Rice Roots. Journal of Environmental Quality, 2011, 40, 679-695.	1.0	12
40	Potential Availability of Fertilizer Selenium in Field Capacity and Submerged Soils. Soil Science Society of America Journal, 2010, 74, 1589-1596.	1.2	29
41	Is rhamnolipid biosurfactant useful in cadmium phytoextraction?. Journal of Soils and Sediments, 2010, 10, 1289-1299.	1.5	18
42	A method for determination of retention of silver and cerium oxide manufactured nanoparticles in soils. Environmental Chemistry, 2010, 7, 298.	0.7	114
43	Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils. Soil Biology and Biochemistry, 2009, 41, 2214-2221.	4.2	122
44	Aging Effects on Cobalt Availability in Soils. Environmental Toxicology and Chemistry, 2009, 28, 1609-1617.	2.2	26
45	A Predictive Model of the Effects of Aging on Cobalt Fate and Behavior in Soil. Environmental Science & Technology, 2009, 43, 135-141.	4.6	36
46	A Novel Technique to Determine Cobalt Exchangeability in Soils Using Isotope Dilution. Environmental Science & Technology, 2008, 42, 140-146.	4.6	15