Conrad W Mullineaux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1050547/publications.pdf

Version: 2024-02-01

100 papers

6,393 citations

50276 46 h-index 69250 77 g-index

104 all docs

104 docs citations

104 times ranked 4365 citing authors

#	Article	IF	Citations
1	Photoprotective Energy Dissipation Involves the Reorganization of Photosystem II Light-Harvesting Complexes in the Grana Membranes of Spinach Chloroplasts. Plant Cell, 2011, 23, 1468-1479.	6.6	305
2	Mobility of photosynthetic complexes in thylakoid membranes. Nature, 1997, 390, 421-424.	27.8	216
3	FtsH Is Involved in the Early Stages of Repair of Photosystem II in Synechocystis sp PCC 6803 [W]. Plant Cell, 2003, 15, 2152-2164.	6.6	212
4	Diffusion of Green Fluorescent Protein in Three Cell Environments in Escherichia Coli. Journal of Bacteriology, 2006, 188, 3442-3448.	2.2	195
5	State transitions: an example of acclimation to low-light stress. Journal of Experimental Botany, 2004, 56, 389-393.	4.8	179
6	Co-existence of photosynthetic and respiratory activities in cyanobacterial thylakoid membranes. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 503-511.	1.0	165
7	State 1-State 2 transitions in the cyanobacterium Synechococcus 6301 are controlled by the redox state of electron carriers between Photosystems I and II. Photosynthesis Research, 1990, 23, 297-311.	2.9	164
8	Lightâ€harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. Plant Journal, 2012, 69, 289-301.	5.7	154
9	Mechanism of intercellular molecular exchange in heterocyst-forming cyanobacteria. EMBO Journal, 2008, 27, 1299-1308.	7.8	145
10	The FtsH Protease slr0228 Is Important for Quality Control of Photosystem II in the Thylakoid Membrane of Synechocystis sp. PCC 6803. Journal of Biological Chemistry, 2006, 281, 1145-1151.	3.4	133
11	Phycobilisome-reaction centre interaction in cyanobacteria. Photosynthesis Research, 2008, 95, 175-182.	2.9	132
12	Cyanobacteria use micro-optics to sense light direction. ELife, 2016, 5, .	6.0	125
13	Protein Diffusion and Macromolecular Crowding in Thylakoid Membranes Â. Plant Physiology, 2008, 146, 1571-1578.	4.8	122
14	Excitation energy transfer from phycobilisomes to Photosystem I in a cyanobacterium. Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1100, 285-292.	1.0	120
15	Diffusion of Phycobilisomes on the Thylakoid Membranes of the Cyanobacterium Synechococcus 7942. Journal of Biological Chemistry, 2001, 276, 46830-46834.	3.4	120
16	Function and evolution of grana. Trends in Plant Science, 2005, 10, 521-525.	8.8	116
17	Phycobilisome Diffusion Is Required for Light-State Transitions in Cyanobacteria. Plant Physiology, 2004, 135, 2112-2119.	4.8	115
18	The Plasma Membrane of the Cyanobacterium <i>Gloeobacter violaceus</i> Contains Segregated Bioenergetic Domains Â. Plant Cell, 2011, 23, 2379-2390.	6.6	113

#	Article	IF	Citations
19	Size Dependence of Protein Diffusion in the Cytoplasm of <i>Escherichia coli</i> Journal of Bacteriology, 2010, 192, 4535-4540.	2.2	112
20	Single-molecule in vivo imaging of bacterial respiratory complexes indicates delocalized oxidative phosphorylation. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 811-824.	1.0	111
21	Excitation energy transfer from phycobilisomes to Photosystem I in a cyanobacterial mutant lacking Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1184, 71-77.	1.0	98
22	Cyanobacterialycf27 gene products regulate energy transfer from phycobilisomes to photosystems I and II. FEMS Microbiology Letters, 1999, 181, 253-260.	1.8	98
23	Clustering and dynamics of cytochrome <i>bd</i> â€l complexes in the <i>Escherichia coli</i> plasma membrane <i>in vivo</i> Molecular Microbiology, 2008, 70, 1397-1407.	2.5	98
24	ApcD is necessary for efficient energy transfer from phycobilisomes to photosystem I and helps to prevent photoinhibition in the cyanobacterium Synechococcus sp. PCC 7002. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1122-1128.	1.0	97
25	Control of electron transport routes through redox-regulated redistribution of respiratory complexes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11431-11436.	7.1	95
26	Visualising the mobility and distribution of chlorophyll-proteins in higher plant thylakoid membranes: effects of photoinhibition and protein phosphorylation. Plant Journal, 2010, 62, 948-59.	5.7	92
27	Intercellular Diffusion of a Fluorescent Sucrose Analog via the Septal Junctions in a Filamentous Cyanobacterium. MBio, 2015, 6, e02109.	4.1	90
28	Electron transport and light-harvesting switches in cyanobacteria. Frontiers in Plant Science, 2014, 5, 7.	3.6	88
29	Title is missing!. Photosynthesis Research, 1999, 61, 169-179.	2.9	87
30	Fra proteins influencing filament integrity, diazotrophy and localization of septal protein SepJ in the heterocystâ€forming cyanobacterium <i>Anabaena</i>	2.5	87
31	Dissecting the Native Architecture and Dynamics of Cyanobacterial Photosynthetic Machinery. Molecular Plant, 2017, 10, 1434-1448.	8.3	87
32	Involvement of an FtsH homologue in the assembly of functional photosystem I in the cyanobacteriumSynechocystissp. PCC 6803. FEBS Letters, 2000, 479, 72-77.	2.8	85
33	Involvement of Phycobilisome Diffusion in Energy Quenching in Cyanobacteria. Plant Physiology, 2005, 138, 1577-1585.	4.8	78
34	How do cyanobacteria sense and respond to light?. Molecular Microbiology, 2001, 41, 965-971.	2.5	74
35	A gene required for the regulation of photosynthetic light harvesting in the cyanobacterium Synechocystis 6803. Molecular Microbiology, 1999, 33, 1050-1058.	2.5	70
36	FraC/FraDâ€dependent intercellular molecular exchange in the filaments of a heterocystâ€forming cyanobacterium, <i>Anabaena</i> sp Molecular Microbiology, 2011, 82, 87-98.	2.5	68

#	Article	IF	CITATIONS
37	Membrane-specific targeting of green fluorescent protein by the Tat pathway in the cyanobacterium Synechocystis PCC6803. Molecular Microbiology, 2003, 48, 1481-1489.	2.5	66
38	Localisation and interactions of the Vipp1 protein in cyanobacteria. Molecular Microbiology, 2014, 94, 1179-1195.	2.5	66
39	Independent mobility of proteins and lipids in the plasma membrane of <scp><i>E</i></scp> <i>scp><i>Escherichia coli</i></i>	2.5	65
40	Light-controlled motility in prokaryotes and the problem of directional light perception. FEMS Microbiology Reviews, 2017, 41, 900-922.	8.6	62
41	The thylakoid membranes of cyanobacteria: structure, dynamics and function. Functional Plant Biology, 1999, 26, 671.	2.1	60
42	Kinetics of excitation energy transfer in the cyanobacterial phycobilisome-Photosystem II complex. Biochimica Et Biophysica Acta - Bioenergetics, 1991, 1098, 68-78.	1.0	59
43	Binding of the <scp>RNA</scp> chaperone <scp>Hfq</scp> to the type <scp>IV</scp> pilus base is crucial for its function in <scp><i>S</i></scp> <i>ynechocystis</i> PCC 6803. Molecular Microbiology, 2014, 92, 840-852.	2.5	56
44	Distinct roles of CpcG1-phycobilisome and CpcG2-phycobilisome in state transitions in a cyanobacterium Synechocystis sp. PCC 6803. Photosynthesis Research, 2009, 99, 217-225.	2.9	53
45	Hydrocarbons Are Essential for Optimal Cell Size, Division, and Growth of Cyanobacteria. Plant Physiology, 2016, 172, 1928-1940.	4.8	53
46	Visualizing the mobility and distribution of chlorophyll proteins in higher plant thylakoid membranes: effects of photoinhibition and protein phosphorylation. Plant Journal, 2010, 62, 948.	5.7	52
47	PilB localization correlates with the direction of twitching motility in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology (United Kingdom), 2015, 161, 960-966.	1.8	51
48	Cyanobacteria in motion. Current Opinion in Plant Biology, 2017, 37, 109-115.	7.1	51
49	Phycobilisome Mobility and Its Role in the Regulation of Light Harvesting in Red Algae. Plant Physiology, 2014, 165, 1618-1631.	4.8	49
50	Mobility of the IsiA Chlorophyll-binding Protein in Cyanobacterial Thylakoid Membranes. Journal of Biological Chemistry, 2004, 279, 36514-36518.	3.4	48
51	Probing the dynamics of photosynthetic membranes with fluorescence recovery after photobleaching. Trends in Plant Science, 2002, 7, 237-240.	8.8	47
52	Are <i>Escherichia coli</i> OXPHOS complexes concentrated in specialized zones within the plasma membrane?. Biochemical Society Transactions, 2008, 36, 1032-1036.	3.4	46
53	Functional dissection of the threeâ€domain SepJ protein joining the cells in cyanobacterial trichomes. Molecular Microbiology, 2011, 79, 1077-1088.	2.5	46
54	Membrane Dynamics in Phototrophic Bacteria. Annual Review of Microbiology, 2020, 74, 633-654.	7.3	46

#	Article	IF	Citations
55	Motility in cyanobacteria: polysaccharide tracks and <scp>T</scp> ype <scp>IV</scp> pilus motors. Molecular Microbiology, 2015, 98, 998-1001.	2.5	45
56	Factors Controlling the Mobility of Photosynthetic Proteins < sup>†< /sup>. Photochemistry and Photobiology, 2008, 84, 1310-1316.	2.5	44
57	Mobilization of Photosystem II Induced by Intense Red Light in the Cyanobacterium Synechococcus sp PCC7942. Plant Cell, 2006, 18, 457-464.	6.6	43
58	Subâ€cellular location of <scp>F</scp> ts <scp>H</scp> proteases in the cyanobacterium <scp><i>SS</i><iscp><i>S</i><iscp><i>S</i><iscp>PCC</iscp></iscp></iscp></scp> 6803 suggests localised <scp>PSII</scp> repair zones in the thylakoid membranes. Molecular Microbiology, 2015, 96, 448-462.	2.5	43
59	Structural variability, coordination and adaptation of a native photosynthetic machinery. Nature Plants, 2020, 6, 869-882.	9.3	43
60	The PsbU Subunit of Photosystem II Stabilizes Energy Transfer and Primary Photochemistry in the Phycobilisomeâ ⁻ Photosystem II Assembly of Synechocystis sp. PCC 6803. Biochemistry, 2005, 44, 16939-16948.	2.5	42
61	Branching and intercellular communication in the $<$ scp $>$ S $<$ /scp $>$ ection $<$ scp $>$ V $<$ /scp $>$ cyanobacterium $<$ scp $>$ $<$ i $>$ M $<$ /i $></scp><i>astigocladus laminosus</i>, a complex multicellular prokaryote. Molecular Microbiology, 2014, 91, 935-949.$	2.5	42
62	Lipid diffusion in the thylakoid membranes of the cyanobacterium Synechococcus sp.: effect of fatty acid desaturation. FEBS Letters, 2003, 553, 295-298.	2.8	41
63	Factors Controlling Floc Formation and Structure in the Cyanobacterium <i>Synechocystis</i> Strain PCC 6803. Journal of Bacteriology, 2019, 201, .	2.2	41
64	Phycobilisome Mobility in the Cyanobacterium Synechococcus sp. PCC7942 is Influenced by the Trimerisation of Photosystem I. Photosynthesis Research, 2004, 79, 179-187.	2.9	40
65	Probing the biogenesis pathway and dynamics of thylakoid membranes. Nature Communications, 2021, 12, 3475.	12.8	40
66	mRNA localization, reaction centre biogenesis and thylakoid membrane targeting in cyanobacteria. Nature Plants, 2020, 6, 1179-1191.	9.3	39
67	Immobility of phycobilins in the thylakoid lumen of a cryptophyte suggests that protein diffusion in the lumen is very restricted. FEBS Letters, 2009, 583, 670-674.	2.8	36
68	Role of Two Cell Wall Amidases in Septal Junction and Nanopore Formation in the Multicellular Cyanobacterium Anabaena sp. PCC 7120. Frontiers in Cellular and Infection Microbiology, 2017, 7, 386.	3.9	35
69	Cyanobacterial Septal Junctions: Properties and Regulation. Life, 2019, 9, 1.	2.4	34
70	Subcellular Localization and Clues for the Function of the HetN Factor Influencing Heterocyst Distribution in Anabaena sp. Strain PCC 7120. Journal of Bacteriology, 2014, 196, 3452-3460.	2.2	33
71	FRAP analysis of photosynthetic membranes. Journal of Experimental Botany, 2004, 55, 1207-1211.	4.8	29
72	Molecular Diffusion through Cyanobacterial Septal Junctions. MBio, 2017, 8, .	4.1	29

#	Article	IF	Citations
7 3	Overexpression of SepJ alters septal morphology and heterocyst pattern regulated by diffusible signals in <i>Anabaena</i> . Molecular Microbiology, 2016, 101, 968-981.	2.5	27
74	Location and Mobility of Twin Arginine Translocase Subunits in the Escherichia coli Plasma Membrane. Journal of Biological Chemistry, 2005, 280, 17961-17968.	3 . 4	26
7 5	Specific Glucoside Transporters Influence Septal Structure and Function in the Filamentous, Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120. Journal of Bacteriology, 2017, 199, .	2.2	25
76	Loss of the SPHF Homologue Slr1768 Leads to a Catastrophic Failure in the Maintenance of Thylakoid Membranes in Synechocystis sp. PCC 6803. PLoS ONE, 2011, 6, e19625.	2.5	23
77	The rpaC gene product regulates phycobilisome–photosystem II interaction in cyanobacteria. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1709, 58-68.	1.0	22
78	The Rolex and the Hourglass: a Simplified Circadian Clock in <i>Prochlorococcus</i> ?. Journal of Bacteriology, 2009, 191, 5333-5335.	2.2	21
79	The Role of the Cyanobacterial Type IV Pilus Machinery in Finding and Maintaining a Favourable Environment. Life, 2020, 10, 252.	2.4	18
80	Using Nature's polyenes as templates: studies of synthetic xanthomonadin analogues and realising their potential as antioxidants. Organic and Biomolecular Chemistry, 2019, 17, 3752-3759.	2.8	15
81	A kaleidoscope of photosynthetic antenna proteins and their emerging roles. Plant Physiology, 2022, 189, 1204-1219.	4.8	14
82	Tracing the path of a prokaryotic paracrine signal. Molecular Microbiology, 2014, 94, 1208-1212.	2.5	12
83	Loss of Filamentous Multicellularity in <i>Cyanobacteria</i> : the Extremophile <i>Gloeocapsopsis</i> sp. Strain UTEX B3054 Retained Multicellular Features at the Genomic and Behavioral Levels. Journal of Bacteriology, 2020, 202, .	2.2	12
84	FraH Is Required for Reorganization of Intracellular Membranes during Heterocyst Differentiation in Anabaena sp. Strain PCC 7120. Journal of Bacteriology, 2011, 193, 6815-6823.	2.2	11
85	Coexistence of Communicating and Noncommunicating Cells in the Filamentous Cyanobacterium <i>Anabaena</i> . MSphere, 2021, 6, .	2.9	11
86	Effect of photosystem II reaction centre closure on fluorescence decay kinetics in a cyanobacterium. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1183, 345-351.	1.0	8
87	Introduction. Photosynthesis Research, 2008, 95, 117-117.	2.9	7
88	Localization and Mobility of Bacterial Proteins by Confocal Microscopy and Fluorescence Recovery After Photobleaching., 2007, 390, 3-16.		4
89	Effects of tubulin assembly inhibitors on cell division in prokaryotes in vivo. FEMS Microbiology Letters, 2000, 191, 25-29.	1.8	3
90	Development of a Highly Sensitive Luciferase-Based Reporter System To Study Two-Step Protein Secretion in Cyanobacteria. Journal of Bacteriology, 2022, 204, JB0050421.	2.2	3

#	Article	IF	CITATIONS
91	Photosynthesis: Rewiring an angiosperm. Nature Plants, 2016, 2, 16018.	9.3	2
92	Non-Photochemical Fluorescence Quenching and the Dynamics of Photosystem II Structure. Advances in Photosynthesis and Respiration, 2014, , 373-386.	1.0	2
93	How bacteria keep proteins moving. ELife, 2017, 6, .	6.0	2
94	Classic Spotlight: to the Periplasm and Beyondâ€"Protein Secretion in Escherichia coli. Journal of Bacteriology, 2016, 198, 2017-2017.	2.2	1
95	Classic Spotlight: Dynamics of the Bacterial Cytoplasm. Journal of Bacteriology, 2016, 198, 1183-1183.	2.2	1
96	The social life of cyanobacteria. ELife, 2021, 10, .	6.0	1
97	Improving the transport of electrons. , 2022, , 161-174.		1
98	Delocalised electron transport and chemiosmosis in Escherichia coli. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, e88.	1.0	0
99	Bacteria in Solitary Confinement. Journal of Bacteriology, 2015, 197, 670-671.	2.2	O
100	Classic Spotlight: Green Fluorescent Protein in Bacillus subtilis and the Birth of Bacterial Cell Biology. Journal of Bacteriology, 2016, 198, 2141-2141.	2.2	O