David J Biddinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10504093/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pollen Protein: Lipid Macronutrient Ratios May Guide Broad Patterns of Bee Species Floral Preferences. Insects, 2020, 11, 132.	2.2	128
2	Comparative Toxicities and Synergism of Apple Orchard Pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLoS ONE, 2013, 8, e72587.	2.5	127
3	Coccinellidae as predators of mites: Stethorini in biological control. Biological Control, 2009, 51, 268-283.	3.0	124
4	Integrated pest and pollinator management — adding a new dimension to an accepted paradigm. Current Opinion in Insect Science, 2015, 10, 204-209.	4.4	90
5	Comparative Trapping Efficiency to Characterize Bee Abundance, Diversity, and Community Composition in Apple Orchards. Annals of the Entomological Society of America, 2015, 108, 785-799.	2.5	75
6	Does Passive Sampling Accurately Reflect the Bee (Apoidea: Anthophila) Communities Pollinating Apple and Sour Cherry Orchards?. Environmental Entomology, 2017, 46, 579-588.	1.4	71
7	Proximity to Woodland and Landscape Structure Drives Pollinator Visitation in Apple Orchard Ecosystem. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	56
8	Local Plant Diversity Across Multiple Habitats Supports a Diverse Wild Bee Community in Pennsylvania Apple Orchards. Environmental Entomology, 2016, 45, 32-38.	1.4	39
9	Evaluation of insecticides for control of the spotted lanternfly, Lycorma delicatula, (Hemiptera:) Tj ETQq1 1 0.784	-314 rgBT 2.1	/Qyerlock 10
10	Apple grower pollination practices and perceptions of alternative pollinators in New York and Pennsylvania. Renewable Agriculture and Food Systems, 2020, 35, 1-14.	1.8	32
11	An immunomarking method to determine the foraging patterns of Osmia cornifrons and resulting fruit set in a cherry orchard. Apidologie, 2013, 44, 738-749.	2.0	30
12	Pollinator exposure to systemic insecticides and fungicides applied in the previous fall and pre-bloom period in apple orchards. Environmental Pollution, 2020, 265, 114589.	7.5	29
13	Applications of Beauveria bassiana (Hypocreales: Cordycipitaceae) to Control Populations of Spotted Lanternfly (Hemiptera: Fulgoridae), in Semi-Natural Landscapes and on Grapevines. Environmental Entomology, 2020, 49, 854-864.	1.4	26
14	Effects of the Loss of Organophosphate Pesticides in the US: Opportunities and Needs to Improve IPM Programs. Outlooks on Pest Management, 2010, 21, 161-166.	0.2	25
15	Reduced-Risk Pest Management Programs for Eastern U.S. Peach Orchards: Effects on Arthropod Predators, Parasitoids, and Select Pests. Journal of Economic Entomology, 2014, 107, 1084-1091.	1.8	22
16	Modeling local spatial patterns of wild bee diversity in Pennsylvania apple orchards. Landscape Ecology, 2016, 31, 2459-2469.	4.2	21
17	Introduced bees (<i>Osmia cornifrons</i>) collect pollen from both coevolved and novel host-plant species within their family-level phylogenetic preferences. Royal Society Open Science, 2020, 7, 200225.	2.4	20
18	Toxicity and Field Efficacy of Avermectins Against Codling Moth (Lepidoptera: Tortricidae) on Apples. Journal of Economic Entomology, 1995, 88, 708-715.	1.8	17

#	Article	IF	CITATIONS
19	Diversified Floral Resource Plantings Support Bee Communities after Apple Bloom in Commercial Orchards. Scientific Reports, 2019, 9, 17232.	3.3	15
20	Environmental impacts of reduced-risk and conventional pesticide programs differ in commercial apple orchards, but similarly influence pollinator community. Chemosphere, 2020, 240, 124926.	8.2	14
21	A new ingestion bioassay protocol for assessing pesticide toxicity to the adult Japanese orchard bee (Osmia cornifrons). Scientific Reports, 2020, 10, 9517.	3.3	13
22	An updated checklist of the bees (Hymenoptera, Apoidea, Anthophila) of Pennsylvania, United States of America. Journal of Hymenoptera Research, 0, 77, 1-86.	0.8	13
23	A native predator utilising the invasive brown marmorated stink bug, <i>Halyomorpha halys</i> (Hemiptera: Pentatomidae) as a food source. Biocontrol Science and Technology, 2017, 27, 903-907.	1.3	11
24	Parasitism of the Invasive Brown Marmorated Stink Bug, Halyomorpha halys (Hemiptera:) Tj ETQq0 0 0 rgBT /Ove	rlock 10 T	f 50 542 Td

25	Wild Bee Nutritional Ecology: Integrative Strategies to Assess Foraging Preferences and Nutritional Requirements. Frontiers in Sustainable Food Systems, 2022, 6, .	3.9	6
26	Opportunities, Experiences, and Strategies to Connect Integrated Pest Management to U.S. Department of Agriculture Conservation Programs. American Entomologist, 2009, 55, 140-146.	0.2	4
27	Toxicity of Formulated Systemic Insecticides Used in Apple Orchard Pest Management Programs to the Honey Bee (Apis mellifera (L.)). Environments - MDPI, 2022, 9, 90.	3.3	4
28	First Report of Native <i>Astata unicolor</i> (Hymenoptera: Crabronidae) Predation on the Nymphs and Adults of the Invasive Brown Marmorated Stink Bug (Hemiptera: Pentatomidae). Florida Entomologist, 2017, 100, 809-812.	0.5	3
29	Whole-Body Acute Contact Toxicity of Formulated Insecticide Mixtures to Blue Orchard Bees (Osmia) Tj ETQq1 1	0,784314	l rgBT /Over
30	Various routes of formulated insecticide mixture whole-body acute contact toxicity to honey bees	4.2	3

³⁰ (Apis mellifera). Environmental Challenges, 2022, 6, 100408. 4.