
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10504020/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology, 2011, 13, 132-141.                                                   | 4.6  | 5,447     |
| 2  | Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition).<br>Autophagy, 2016, 12, 1-222.                                         | 4.3  | 4,701     |
| 3  | TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival. Cell, 2003, 115, 577-590.                                                              | 13.5 | 3,362     |
| 4  | Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.                                                         | 4.3  | 3,122     |
| 5  | TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biology, 2002,<br>4, 648-657.                                              | 4.6  | 2,667     |
| 6  | Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes and Development, 2007, 21, 2747-2761. | 2.7  | 2,487     |
| 7  | Oncometabolite 2-Hydroxyglutarate Is a Competitive Inhibitor of α-Ketoglutarate-Dependent<br>Dioxygenases. Cancer Cell, 2011, 19, 17-30.                           | 7.7  | 2,340     |
| 8  | TEAD mediates YAP-dependent gene induction and growth control. Genes and Development, 2008, 22, 1962-1971.                                                         | 2.7  | 1,943     |
| 9  | Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell, 2015, 163, 811-828.                                                                     | 13.5 | 1,716     |
| 10 | Regulation of Cellular Metabolism by Protein Lysine Acetylation. Science, 2010, 327, 1000-1004.                                                                    | 6.0  | 1,642     |
| 11 | Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes and Development, 2003, 17, 1829-1834.                                      | 2.7  | 1,566     |
| 12 | mTOR: a pharmacologic target for autophagy regulation. Journal of Clinical Investigation, 2015, 125, 25-32.                                                        | 3.9  | 1,425     |
| 13 | Regulation of the Hippo-YAP Pathway by G-Protein-Coupled Receptor Signaling. Cell, 2012, 150, 780-791.                                                             | 13.5 | 1,310     |
| 14 | ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nature Cell<br>Biology, 2013, 15, 741-750.                                   | 4.6  | 1,255     |
| 15 | Mechanisms of Hippo pathway regulation. Genes and Development, 2016, 30, 1-17.                                                                                     | 2.7  | 1,224     |
| 16 | TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to<br>Regulate Cell Growth. Cell, 2006, 126, 955-968.                    | 13.5 | 1,183     |
| 17 | Regulation of TORC1 by Rag GTPases in nutrient response. Nature Cell Biology, 2008, 10, 935-945.                                                                   | 4.6  | 1,143     |
| 18 | A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF <sup>β-TRCP</sup> .<br>Genes and Development, 2010, 24, 72-85.                   | 2.7  | 1,100     |

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The Hippo pathway: regulators and regulations. Genes and Development, 2013, 27, 355-371.                                                                                                           | 2.7  | 1,034     |
| 20 | Glioma-Derived Mutations in <i>IDH1</i> Dominantly Inhibit IDH1 Catalytic Activity and Induce HIF-1α.<br>Science, 2009, 324, 261-265.                                                              | 6.0  | 1,014     |
| 21 | The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nature Cell<br>Biology, 2011, 13, 877-883.                                                                | 4.6  | 1,009     |
| 22 | The Hippo–YAP pathway in organ size control and tumorigenesis: an updated version. Genes and<br>Development, 2010, 24, 862-874.                                                                    | 2.7  | 978       |
| 23 | The emerging roles of YAP and TAZ in cancer. Nature Reviews Cancer, 2015, 15, 73-79.                                                                                                               | 12.8 | 928       |
| 24 | Acetylation of Metabolic Enzymes Coordinates Carbon Source Utilization and Metabolic Flux. Science, 2010, 327, 1004-1007.                                                                          | 6.0  | 924       |
| 25 | Dysregulation of the TSC-mTOR pathway in human disease. Nature Genetics, 2005, 37, 19-24.                                                                                                          | 9.4  | 911       |
| 26 | Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes and Development, 2012, 26, 1326-1338. | 2.7  | 855       |
| 27 | TAZ Promotes Cell Proliferation and Epithelial-Mesenchymal Transition and Is Inhibited by the Hippo<br>Pathway. Molecular and Cellular Biology, 2008, 28, 2426-2436.                               | 1.1  | 805       |
| 28 | Amino acid signalling upstream of mTOR. Nature Reviews Molecular Cell Biology, 2013, 14, 133-139.                                                                                                  | 16.1 | 716       |
| 29 | The Hippo Pathway: Biology and Pathophysiology. Annual Review of Biochemistry, 2019, 88, 577-604.                                                                                                  | 5.0  | 708       |
| 30 | mTOR as a central hub of nutrient signalling and cell growth. Nature Cell Biology, 2019, 21, 63-71.                                                                                                | 4.6  | 698       |
| 31 | Negative Regulation of the Forkhead Transcription Factor FKHR by Akt. Journal of Biological Chemistry, 1999, 274, 16741-16746.                                                                     | 1.6  | 688       |
| 32 | AMPK and mTOR in Cellular Energy Homeostasis and Drug Targets. Annual Review of Pharmacology and Toxicology, 2012, 52, 381-400.                                                                    | 4.2  | 650       |
| 33 | Differential Regulation of Distinct Vps34 Complexes by AMPK in Nutrient Stress and Autophagy. Cell, 2013, 152, 290-303.                                                                            | 13.5 | 646       |
| 34 | Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes and Development, 2012, 26, 54-68.                                                             | 2.7  | 632       |
| 35 | ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4153-4158.                 | 3.3  | 628       |
| 36 | The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation.<br>Genes and Development, 2010, 24, 1106-1118.                                                 | 2.7  | 621       |

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | TSC–mTOR maintains quiescence and function of hematopoietic stem cells by repressing<br>mitochondrial biogenesis and reactive oxygen species. Journal of Experimental Medicine, 2008, 205,<br>2397-2408. | 4.2  | 615       |
| 38 | Autophagy regulation by nutrient signaling. Cell Research, 2014, 24, 42-57.                                                                                                                              | 5.7  | 601       |
| 39 | Differential regulation of mTORC1 by leucine and glutamine. Science, 2015, 347, 194-198.                                                                                                                 | 6.0  | 585       |
| 40 | Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling.<br>EMBO Journal, 2008, 27, 1919-1931.                                                                  | 3.5  | 567       |
| 41 | Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes and Development, 2011, 25, 51-63.                                                                                     | 2.7  | 557       |
| 42 | The Hippo signaling pathway in stem cell biology and cancer. EMBO Reports, 2014, 15, 642-656.                                                                                                            | 2.0  | 532       |
| 43 | A gp130–Src–YAP module links inflammation to epithelial regeneration. Nature, 2015, 519, 57-62.                                                                                                          | 13.7 | 528       |
| 44 | Alternative Wnt Signaling Activates YAP/TAZ. Cell, 2015, 162, 780-794.                                                                                                                                   | 13.5 | 528       |
| 45 | The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR.<br>Autophagy, 2011, 7, 643-644.                                                                         | 4.3  | 508       |
| 46 | Expanding mTOR signaling. Cell Research, 2007, 17, 666-681.                                                                                                                                              | 5.7  | 485       |
| 47 | Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes and Development, 2004, 18, 1533-1538.                           | 2.7  | 481       |
| 48 | Acetylation Targets the M2 Isoform of Pyruvate Kinase for Degradation through Chaperone-Mediated Autophagy and Promotes Tumor Growth. Molecular Cell, 2011, 42, 719-730.                                 | 4.5  | 479       |
| 49 | TEAD Transcription Factors Mediate the Function of TAZ in Cell Growth and Epithelial-Mesenchymal Transition. Journal of Biological Chemistry, 2009, 284, 13355-13362.                                    | 1.6  | 470       |
| 50 | Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS.<br>EMBO Reports, 2011, 12, 534-541.                                                                   | 2.0  | 468       |
| 51 | mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice.<br>Journal of Clinical Investigation, 2011, 121, 2181-2196.                                        | 3.9  | 462       |
| 52 | YAP and TAZ: a nexus for Hippo signaling and beyond. Trends in Cell Biology, 2015, 25, 499-513.                                                                                                          | 3.6  | 445       |
| 53 | Semaphorins command cells to move. Nature Reviews Molecular Cell Biology, 2005, 6, 789-800.                                                                                                              | 16.1 | 444       |
| 54 | Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes and Development, 2006, 20, 2820-2832.                                                   | 2.7  | 434       |

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The Hippo Tumor Pathway Promotes TAZ Degradation by Phosphorylating a Phosphodegron and Recruiting the SCFÎ <sup>2</sup> -TrCP E3 Ligase. Journal of Biological Chemistry, 2010, 285, 37159-37169. | 1.6  | 422       |
| 56 | Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nature Cell<br>Biology, 2015, 17, 500-510.                                                                   | 4.6  | 421       |
| 57 | The Hippo–YAP pathway: new connections between regulation of organ size and cancer. Current<br>Opinion in Cell Biology, 2008, 20, 638-646.                                                         | 2.6  | 400       |
| 58 | The YAP and TAZ transcription co-activators: Key downstream effectors of the mammalian Hippo pathway. Seminars in Cell and Developmental Biology, 2012, 23, 785-793.                               | 2.3  | 397       |
| 59 | Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nature<br>Reviews Drug Discovery, 2020, 19, 480-494.                                                     | 21.5 | 396       |
| 60 | YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN viaÂmiR-29.<br>Nature Cell Biology, 2012, 14, 1322-1329.                                                      | 4.6  | 392       |
| 61 | Mutant Gq/11 Promote Uveal Melanoma Tumorigenesis by Activating YAP. Cancer Cell, 2014, 25, 822-830.                                                                                               | 7.7  | 391       |
| 62 | MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nature Communications, 2015, 6, 8357.                                                                     | 5.8  | 388       |
| 63 | TSC2: filling the GAP in the mTOR signaling pathway. Trends in Biochemical Sciences, 2004, 29, 32-38.                                                                                              | 3.7  | 373       |
| 64 | Mechanisms of regulating the Raf kinase family. Cellular Signalling, 2003, 15, 463-469.                                                                                                            | 1.7  | 356       |
| 65 | Sirt3 Promotes the Urea Cycle and Fatty Acid Oxidation during Dietary Restriction. Molecular Cell, 2011, 41, 139-149.                                                                              | 4.5  | 344       |
| 66 | <i>IDH1</i> and <i>IDH2</i> Mutations in Tumorigenesis: Mechanistic Insights and Clinical<br>Perspectives. Clinical Cancer Research, 2012, 18, 5562-5571.                                          | 3.2  | 341       |
| 67 | Acetylation Regulates Gluconeogenesis by Promoting PEPCK1 Degradation via Recruiting the UBR5ÂUbiquitin Ligase. Molecular Cell, 2011, 43, 33-44.                                                   | 4.5  | 331       |
| 68 | Nutrient signaling to mTOR and cell growth. Trends in Biochemical Sciences, 2013, 38, 233-242.                                                                                                     | 3.7  | 327       |
| 69 | Regulation of intermediary metabolism by protein acetylation. Trends in Biochemical Sciences, 2011, 36, 108-116.                                                                                   | 3.7  | 323       |
| 70 | Flow-dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11525-11530.    | 3.3  | 323       |
| 71 | The Hippo Pathway Kinases LATS1/2 Suppress Cancer Immunity. Cell, 2016, 167, 1525-1539.e17.                                                                                                        | 13.5 | 318       |
| 72 | Structural insights into the YAP and TEAD complex. Genes and Development, 2010, 24, 235-240.                                                                                                       | 2.7  | 310       |

| #  | Article                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Signaling by Target of Rapamycin Proteins in Cell Growth Control. Microbiology and Molecular<br>Biology Reviews, 2005, 69, 79-100.                                   | 2.9  | 296       |
| 74 | Acetylation Stabilizes ATP-Citrate Lyase to Promote Lipid Biosynthesis and Tumor Growth. Molecular<br>Cell, 2013, 51, 506-518.                                       | 4.5  | 291       |
| 75 | MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. Journal of Clinical Investigation, 2010, 120, 2805-2816.                   | 3.9  | 291       |
| 76 | Nutrient Sensing, Metabolism, and Cell Growth Control. Molecular Cell, 2013, 49, 379-387.                                                                            | 4.5  | 285       |
| 77 | Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nature Genetics, 2001, 29, 25-33.                                                                            | 9.4  | 284       |
| 78 | Interplay between YAP/TAZ and Metabolism. Cell Metabolism, 2018, 28, 196-206.                                                                                        | 7.2  | 281       |
| 79 | A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes and Development, 2015, 29, 1271-1284.                                                | 2.7  | 278       |
| 80 | Sestrins Inhibit mTORC1 Kinase Activation through the GATOR Complex. Cell Reports, 2014, 9, 1281-1291.                                                               | 2.9  | 273       |
| 81 | Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes and Development, 2013, 27, 1223-1232.                         | 2.7  | 269       |
| 82 | Signalling mechanisms mediating neuronal responses to guidance cues. Nature Reviews Neuroscience,<br>2003, 4, 941-956.                                               | 4.9  | 267       |
| 83 | RAP2 mediates mechanoresponses of the Hippo pathway. Nature, 2018, 560, 655-660.                                                                                     | 13.7 | 266       |
| 84 | Lysine-5 Acetylation Negatively Regulates Lactate Dehydrogenase A and Is Decreased in Pancreatic<br>Cancer. Cancer Cell, 2013, 23, 464-476.                          | 7.7  | 257       |
| 85 | Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy, 2013,<br>9, 1983-1995.                                                 | 4.3  | 249       |
| 86 | Mitogenic and Oncogenic Stimulation of K433 Acetylation Promotes PKM2 Protein Kinase Activity and<br>Nuclear Localization. Molecular Cell, 2013, 52, 340-352.        | 4.5  | 246       |
| 87 | WT1 Recruits TET2 to Regulate Its Target Gene Expression and Suppress Leukemia Cell Proliferation.<br>Molecular Cell, 2015, 57, 662-673.                             | 4.5  | 242       |
| 88 | Regulation of the Hippo–YAP pathway by protease-activated receptors (PARs). Genes and Development,<br>2012, 26, 2138-2143.                                           | 2.7  | 239       |
| 89 | Biochemical and Functional Characterizations of Small GTPase Rheb and TSC2 GAP Activity. Molecular<br>and Cellular Biology, 2004, 24, 7965-7975.                     | 1.1  | 226       |
| 90 | Bnip3 Mediates the Hypoxia-induced Inhibition on Mammalian Target of Rapamycin by Interacting with<br>Rheb. Journal of Biological Chemistry, 2007, 282, 35803-35813. | 1.6  | 224       |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Characterization of Hippo Pathway Components by Gene Inactivation. Molecular Cell, 2016, 64, 993-1008.                                                                                                          | 4.5 | 219       |
| 92  | Regulation of the Hippo Pathway Transcription Factor TEAD. Trends in Biochemical Sciences, 2017, 42, 862-872.                                                                                                   | 3.7 | 218       |
| 93  | The Stress-inducted Proteins RTP801 and RTP801L Are Negative Regulators of the Mammalian Target of<br>Rapamycin Pathway. Journal of Biological Chemistry, 2005, 280, 9769-9772.                                 | 1.6 | 217       |
| 94  | <scp>SIRT</scp> 5 promotes <scp>IDH</scp> 2 desuccinylation and G6 <scp>PD</scp> deglutarylation to<br>enhance cellular antioxidant defense. EMBO Reports, 2016, 17, 811-822.                                   | 2.0 | 210       |
| 95  | Regulation of G6PD acetylation by KAT9/SIRT2 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO Journal, 2014, 33, 1304-20.                                                            | 3.5 | 205       |
| 96  | The Hippo pathway in intestinal regeneration and disease. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 324-337.                                                                                    | 8.2 | 204       |
| 97  | Amino Acid Signaling in TOR Activation. Annual Review of Biochemistry, 2011, 80, 1001-1032.                                                                                                                     | 5.0 | 202       |
| 98  | Mechanistic insights into the regulation of metabolic enzymes by acetylation. Journal of Cell Biology, 2012, 198, 155-164.                                                                                      | 2.3 | 202       |
| 99  | Kinase Suppressor of Ras Forms a Multiprotein Signaling Complex and Modulates MEK Localization.<br>Molecular and Cellular Biology, 1999, 19, 5523-5534.                                                         | 1.1 | 201       |
| 100 | A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression.<br>American Journal of Physiology - Cell Physiology, 2008, 295, C836-C843.                                         | 2.1 | 199       |
| 101 | TSC1 Stabilizes TSC2 by Inhibiting the Interaction between TSC2 and the HERC1 Ubiquitin Ligase*.<br>Journal of Biological Chemistry, 2006, 281, 8313-8316.                                                      | 1.6 | 195       |
| 102 | lκB kinase ε and TANK-binding kinase 1 activate AKT by direct phosphorylation. Proceedings of the<br>National Academy of Sciences of the United States of America, 2011, 108, 6474-6479.                        | 3.3 | 195       |
| 103 | Negative Regulation of the Serine/Threonine Kinase B-Raf by Akt. Journal of Biological Chemistry, 2000, 275, 27354-27359.                                                                                       | 1.6 | 194       |
| 104 | A Role for NF-κB Essential Modifier/IκB Kinase-γ (NEMO/IKKγ) Ubiquitination in the Activation of the IκB<br>Kinase Complex by Tumor Necrosis Factor-α. Journal of Biological Chemistry, 2003, 278, 37297-37305. | 1.6 | 191       |
| 105 | Disease implications of the Hippo/YAP pathway. Trends in Molecular Medicine, 2015, 21, 212-222.                                                                                                                 | 3.5 | 191       |
| 106 | Adiponectin Sensitizes Insulin Signaling by Reducing p70 S6 Kinase-mediated Serine Phosphorylation of IRS-1. Journal of Biological Chemistry, 2007, 282, 7991-7996.                                             | 1.6 | 179       |
| 107 | Estrogen regulates Hippo signaling via GPER in breast cancer. Journal of Clinical Investigation, 2015, 125, 2123-2135.                                                                                          | 3.9 | 179       |
| 108 | The Hippo Pathway in Heart Development, Regeneration, and Diseases. Circulation Research, 2015, 116, 1431-1447.                                                                                                 | 2.0 | 178       |

| #   | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Temporal Changes in PTEN and mTORC2 Regulation of Hematopoietic Stem Cell Self-Renewal and Leukemia Suppression. Cell Stem Cell, 2012, 11, 415-428.                                                                                          | 5.2 | 177       |
| 110 | Complexity of the TOR signaling network. Trends in Cell Biology, 2006, 16, 206-212.                                                                                                                                                          | 3.6 | 176       |
| 111 | The Hippo pathway in organ development, homeostasis, and regeneration. Current Opinion in Cell<br>Biology, 2017, 49, 99-107.                                                                                                                 | 2.6 | 176       |
| 112 | Both TEAD-Binding and WW Domains Are Required for the Growth Stimulation and Oncogenic<br>Transformation Activity of Yes-Associated Protein. Cancer Research, 2009, 69, 1089-1098.                                                           | 0.4 | 175       |
| 113 | AMPK and autophagy in glucose/glycogen metabolism. Molecular Aspects of Medicine, 2015, 46, 46-62.                                                                                                                                           | 2.7 | 175       |
| 114 | TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6811-6816.                                                                | 3.3 | 169       |
| 115 | Organ Size Control by Hippo and TOR Pathways. Current Biology, 2012, 22, R368-R379.                                                                                                                                                          | 1.8 | 167       |
| 116 | Critical Role for Hypothalamic mTOR Activity in Energy Balance. Cell Metabolism, 2009, 9, 362-374.                                                                                                                                           | 7.2 | 164       |
| 117 | The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1. Cell Research, 2015, 25, 1299-1313.                                                                                                | 5.7 | 164       |
| 118 | The Hippo pathway effector proteins YAP and TAZ have both distinct and overlapping functions in the cell. Journal of Biological Chemistry, 2018, 293, 11230-11240.                                                                           | 1.6 | 164       |
| 119 | mTOR Pathway as a Target in Tissue Hypertrophy. Annual Review of Pharmacology and Toxicology, 2007, 47, 443-467.                                                                                                                             | 4.2 | 162       |
| 120 | Metabolism, Activity, and Targeting of D- and L-2-Hydroxyglutarates. Trends in Cancer, 2018, 4, 151-165.                                                                                                                                     | 3.8 | 160       |
| 121 | Constitutive mTOR activation in TSC mutants sensitizes cells to energy starvation and genomic damage via p53. EMBO Journal, 2007, 26, 4812-4823.                                                                                             | 3.5 | 153       |
| 122 | Oncometabolite D-2-Hydroxyglutarate Inhibits ALKBH DNA Repair Enzymes and Sensitizes IDH Mutant<br>Cells to Alkylating Agents. Cell Reports, 2015, 13, 2353-2361.                                                                            | 2.9 | 153       |
| 123 | Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming. Nature Cell Biology, 2015, 17, 1379-1387.                                                                                              | 4.6 | 153       |
| 124 | Hippo signalling governs cytosolic nucleic acid sensing through YAP/TAZ-mediated TBK1 blockade.<br>Nature Cell Biology, 2017, 19, 362-374.                                                                                                   | 4.6 | 153       |
| 125 | Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation. Nature Cell Biology, 2017, 19, 996-1002.                                                                                                | 4.6 | 153       |
| 126 | The semaphorin receptor plexin-B1 signals through a direct interaction with the Rho-specific<br>nucleotide exchange factor, LARG. Proceedings of the National Academy of Sciences of the United<br>States of America, 2002, 99, 12085-12090. | 3.3 | 152       |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | <scp>SIRT</scp> 3â€dependent <scp>GOT</scp> 2 acetylation status affects the malate–aspartate<br><scp>NADH</scp> shuttle activity and pancreatic tumor growth. EMBO Journal, 2015, 34, 1110-1125.                  | 3.5 | 152       |
| 128 | The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential. Biochemical and Biophysical Research Communications, 2009, 384, 471-475.                            | 1.0 | 150       |
| 129 | The p38 and MK2 Kinase Cascade Phosphorylates Tuberin, the Tuberous Sclerosis 2 Gene Product, and Enhances Its Interaction with 14-3-3. Journal of Biological Chemistry, 2003, 278, 13663-13671.                   | 1.6 | 143       |
| 130 | Sestrin2 inhibits mTORC1 through modulation of GATOR complexes. Scientific Reports, 2015, 5, 9502.                                                                                                                 | 1.6 | 137       |
| 131 | The N-terminal Phosphodegron Targets TAZ/WWTR1 Protein for SCFβ-TrCP-dependent Degradation in<br>Response to Phosphatidylinositol 3-Kinase Inhibition. Journal of Biological Chemistry, 2012, 287,<br>26245-26253. | 1.6 | 134       |
| 132 | Phosphorylation of Angiomotin by Lats1/2 Kinases Inhibits F-actin Binding, Cell Migration, and Angiogenesis. Journal of Biological Chemistry, 2013, 288, 34041-34051.                                              | 1.6 | 133       |
| 133 | Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1. Nature Cell Biology, 2011, 13, 263-272.                                                     | 4.6 | 128       |
| 134 | The leucine-rich repeat protein SUR-8 enhances MAP kinase activation and forms a complex with Ras and Raf. Genes and Development, 2000, 14, 895-900.                                                               | 2.7 | 128       |
| 135 | Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nature Communications, 2018, 9, 508.                                                        | 5.8 | 127       |
| 136 | Oxidative Stress Activates SIRT2 to Deacetylate and Stimulate Phosphoglycerate Mutase. Cancer<br>Research, 2014, 74, 3630-3642.                                                                                    | 0.4 | 124       |
| 137 | An emerging role for TOR signaling in mammalian tissue and stem cell physiology. Development<br>(Cambridge), 2011, 138, 3343-3356.                                                                                 | 1.2 | 123       |
| 138 | Redox Regulates Mammalian Target of Rapamycin Complex 1 (mTORC1) Activity by Modulating the TSC1/TSC2-Rheb GTPase Pathway. Journal of Biological Chemistry, 2011, 286, 32651-32660.                                | 1.6 | 123       |
| 139 | Glut3 Addiction Is a Druggable Vulnerability for a Molecularly Defined Subpopulation of Glioblastoma. Cancer Cell, 2017, 32, 856-868.e5.                                                                           | 7.7 | 121       |
| 140 | Regulation of mTORC1 by the Rab and Arf GTPases. Journal of Biological Chemistry, 2010, 285, 19705-19709.                                                                                                          | 1.6 | 120       |
| 141 | PP1 Cooperates with ASPP2 to Dephosphorylate and Activate TAZ. Journal of Biological Chemistry, 2011, 286, 5558-5566.                                                                                              | 1.6 | 120       |
| 142 | Hippo Signaling in Embryogenesis and Development. Trends in Biochemical Sciences, 2021, 46, 51-63.                                                                                                                 | 3.7 | 118       |
| 143 | Cholesterol Stabilizes TAZ in Hepatocytes to Promote Experimental Non-alcoholic Steatohepatitis.<br>Cell Metabolism, 2020, 31, 969-986.e7.                                                                         | 7.2 | 117       |
| 144 | Osmotic stressâ€induced phosphorylation by <scp>NLK</scp> at Ser128 activates <scp>YAP</scp> . EMBO<br>Reports, 2017, 18, 72-86.                                                                                   | 2.0 | 112       |

| #   | Article                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | OTUB2 Promotes Cancer Metastasis via Hippo-Independent Activation of YAP and TAZ. Molecular Cell, 2019, 73, 7-21.e7.                                                | 4.5 | 112       |
| 146 | Acetylation Negatively Regulates Glycogen Phosphorylase by Recruiting Protein Phosphatase 1. Cell Metabolism, 2012, 15, 75-87.                                      | 7.2 | 110       |
| 147 | Hippo signaling at a glance. Journal of Cell Science, 2010, 123, 4001-4006.                                                                                         | 1.2 | 107       |
| 148 | The Plexin-B1/Rac interaction inhibits PAK activation and enhances Sema4D ligand binding. Genes and Development, 2002, 16, 836-845.                                 | 2.7 | 106       |
| 149 | Both Decreased and Increased SRPK1 Levels Promote Cancer by Interfering with PHLPP-Mediated Dephosphorylation of Akt. Molecular Cell, 2014, 54, 378-391.            | 4.5 | 105       |
| 150 | Selective Activation of MEK1 but Not MEK2 by A-Raf from Epidermal Growth Factor-stimulated Hela<br>Cells. Journal of Biological Chemistry, 1996, 271, 3265-3271.    | 1.6 | 104       |
| 151 | mTORC1 underlies ageâ€related muscle fiber damage and loss by inducing oxidative stress and catabolism. Aging Cell, 2019, 18, e12943.                               | 3.0 | 104       |
| 152 | Hippo Pathway Regulation of Gastrointestinal Tissues. Annual Review of Physiology, 2015, 77, 201-227.                                                               | 5.6 | 103       |
| 153 | AMP-activated Protein Kinase Contributes to UV- and H2O2-induced Apoptosis in Human Skin<br>Keratinocytes. Journal of Biological Chemistry, 2008, 283, 28897-28908. | 1.6 | 100       |
| 154 | Alterations of metabolic genes and metabolites in cancer. Seminars in Cell and Developmental Biology, 2012, 23, 370-380.                                            | 2.3 | 100       |
| 155 | Regulation of the Hippo pathway and implications for anticancer drug development. Trends in<br>Pharmacological Sciences, 2013, 34, 581-589.                         | 4.0 | 100       |
| 156 | Regulation of TSC2 by 14-3-3 Binding. Journal of Biological Chemistry, 2002, 277, 44593-44596.                                                                      | 1.6 | 99        |
| 157 | mTORC1 Promotes Denervation-Induced Muscle Atrophy Through a Mechanism Involving the Activation of FoxO and E3 Ubiquitin Ligases. Science Signaling, 2014, 7, ra18. | 1.6 | 98        |
| 158 | STRIPAK integrates upstream signals to initiate the Hippo kinase cascade. Nature Cell Biology, 2019, 21, 1565-1577.                                                 | 4.6 | 98        |
| 159 | Defects of Vps15 in skeletal muscles lead to autophagic vacuolar myopathy and lysosomal disease.<br>EMBO Molecular Medicine, 2013, 5, 870-890.                      | 3.3 | 96        |
| 160 | Crystal structure of the Gtr1p–Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation. Genes and Development, 2011, 25, 1668-1673.         | 2.7 | 93        |
| 161 | Serum- and Glucocorticoid-inducible Kinase SGK Phosphorylates and Negatively Regulates B-Raf.<br>Journal of Biological Chemistry, 2001, 276, 31620-31626.           | 1.6 | 92        |
| 162 | Destabilization of Fatty Acid Synthase by Acetylation Inhibits <i>De Novo</i> Lipogenesis and Tumor<br>Cell Growth. Cancer Research, 2016, 76, 6924-6936.           | 0.4 | 92        |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Regulation of Integrin $\hat{l}^21$ Recycling to Lipid Rafts by Rab1a to Promote Cell Migration. Journal of Biological Chemistry, 2010, 285, 29398-29405.                                             | 1.6 | 90        |
| 164 | Tuberous sclerosis complex, implication from a rare genetic disease to common cancer treatment.<br>Human Molecular Genetics, 2009, 18, R94-R100.                                                      | 1.4 | 89        |
| 165 | Generation of acetyllysine antibodies and affinity enrichment of acetylated peptides. Nature<br>Protocols, 2010, 5, 1583-1595.                                                                        | 5.5 | 89        |
| 166 | Rheb controls misfolded protein metabolism by inhibiting aggresome formation and autophagy.<br>Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8923-8928. | 3.3 | 88        |
| 167 | Critical roles for the TSC-mTOR pathway in β-cell function. American Journal of Physiology -<br>Endocrinology and Metabolism, 2009, 297, E1013-E1022.                                                 | 1.8 | 88        |
| 168 | Thromboxane A2 Activates YAP/TAZ Protein to Induce Vascular Smooth Muscle Cell Proliferation and Migration. Journal of Biological Chemistry, 2016, 291, 18947-18958.                                  | 1.6 | 88        |
| 169 | YAP–IL-6ST autoregulatory loop activated on APC loss controls colonic tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1643-1648.           | 3.3 | 85        |
| 170 | Regulation of the autophagy initiating kinase ULK1 by nutrients: Roles of mTORC1 and AMPK. Cell Cycle, 2011, 10, 1337-1338.                                                                           | 1.3 | 81        |
| 171 | The Tuberous Sclerosis Complex–Mammalian Target of Rapamycin Pathway Maintains the Quiescence<br>and Survival of Naive T Cells. Journal of Immunology, 2011, 187, 1106-1112.                          | 0.4 | 80        |
| 172 | Glyceraldehyde-3-phosphate Dehydrogenase Is Activated by Lysine 254 Acetylation in Response to<br>Glucose Signal. Journal of Biological Chemistry, 2014, 289, 3775-3785.                              | 1.6 | 79        |
| 173 | Identification of FIP200 interaction with the TSC1–TSC2 complex and its role in regulation of cell size control. Journal of Cell Biology, 2005, 170, 379-389.                                         | 2.3 | 78        |
| 174 | R-2-Hydroxyglutarate as the Key Effector of IDH Mutations Promoting Oncogenesis. Cancer Cell, 2013, 23, 274-276.                                                                                      | 7.7 | 77        |
| 175 | Amino Acids License Kinase mTORC1 Activity and Treg Cell Function via Small G Proteins Rag and Rheb.<br>Immunity, 2019, 51, 1012-1027.e7.                                                             | 6.6 | 76        |
| 176 | Regulation of the Hippo Pathway by Phosphatidic Acid-Mediated Lipid-Protein Interaction. Molecular<br>Cell, 2018, 72, 328-340.e8.                                                                     | 4.5 | 74        |
| 177 | Rag GTPases are cardioprotective by regulating lysosomal function. Nature Communications, 2014, 5, 4241.                                                                                              | 5.8 | 73        |
| 178 | Insulin and mTOR Pathway Regulate HDAC3-Mediated Deacetylation and Activation of PGK1. PLoS Biology, 2015, 13, e1002243.                                                                              | 2.6 | 72        |
| 179 | MTORC1-mediated NRBF2 phosphorylation functions as a switch for the class III PtdIns3K and autophagy. Autophagy, 2017, 13, 592-607.                                                                   | 4.3 | 71        |
| 180 | LATS2 Suppresses Oncogenic Wnt Signaling by Disrupting β-Catenin/BCL9 Interaction. Cell Reports, 2013, 5, 1650-1663.                                                                                  | 2.9 | 69        |

| #   | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Mst1 shuts off cytosolic antiviral defense through IRF3 phosphorylation. Genes and Development, 2016, 30, 1086-1100.                                                                                                        | 2.7 | 68        |
| 182 | Induction of AP-1 by YAP/TAZ contributes to cell proliferation and organ growth. Genes and Development, 2020, 34, 72-86.                                                                                                    | 2.7 | 68        |
| 183 | Function of the Rho Family GTPases in Ras-stimulated Raf Activation. Journal of Biological Chemistry, 2001, 276, 34728-34737.                                                                                               | 1.6 | 67        |
| 184 | ltaconate inhibits TET DNA dioxygenases to dampen inflammatory responses. Nature Cell Biology, 2022, 24, 353-363.                                                                                                           | 4.6 | 67        |
| 185 | Microtubule-associated Protein/Microtubule Affinity-regulating Kinase 4 (MARK4) Is a Negative<br>Regulator of the Mammalian Target of Rapamycin Complex 1 (mTORC1). Journal of Biological Chemistry,<br>2013, 288, 703-708. | 1.6 | 64        |
| 186 | Endothelin Promotes Colorectal Tumorigenesis by Activating YAP/TAZ. Cancer Research, 2017, 77, 2413-2423.                                                                                                                   | 0.4 | 63        |
| 187 | SNIP1 Recruits TET2 to Regulate c-MYC Target Genes and Cellular DNA Damage Response. Cell Reports, 2018, 25, 1485-1500.e4.                                                                                                  | 2.9 | 63        |
| 188 | The multifaceted role of autophagy in cancer. EMBO Journal, 2022, 41, e110031.                                                                                                                                              | 3.5 | 63        |
| 189 | GPCR signaling inhibits mTORC1 via PKA phosphorylation of Raptor. ELife, 2019, 8, .                                                                                                                                         | 2.8 | 60        |
| 190 | Down Syndrome Cell Adhesion Molecule (DSCAM) Associates with Uncoordinated-5C (UNC5C) in<br>Netrin-1-mediated Growth Cone Collapse. Journal of Biological Chemistry, 2012, 287, 27126-27138.                                | 1.6 | 57        |
| 191 | elF5A-PEAK1 Signaling Regulates YAP1/TAZ Protein Expression and Pancreatic Cancer Cell Growth.<br>Cancer Research, 2017, 77, 1997-2007.                                                                                     | 0.4 | 57        |
| 192 | Volume Adaptation Controls Stem Cell Mechanotransduction. ACS Applied Materials & amp; Interfaces, 2019, 11, 45520-45530.                                                                                                   | 4.0 | 57        |
| 193 | Oncogenic R132 IDH1 Mutations Limit NADPH for De Novo Lipogenesis through (D)2-Hydroxyglutarate<br>Production in Fibrosarcoma Cells. Cell Reports, 2018, 25, 1018-1026.e4.                                                  | 2.9 | 56        |
| 194 | Heat stress activates YAP/TAZ to induce the heat shock transcriptome. Nature Cell Biology, 2020, 22, 1447-1459.                                                                                                             | 4.6 | 56        |
| 195 | Lysine 88 Acetylation Negatively Regulates Ornithine Carbamoyltransferase Activity in Response to<br>Nutrient Signals. Journal of Biological Chemistry, 2009, 284, 13669-13675.                                             | 1.6 | 55        |
| 196 | Transcriptional repression of estrogen receptor alpha by YAP reveals the Hippo pathway as therapeutic target for ER+ breast cancer. Nature Communications, 2022, 13, 1061.                                                  | 5.8 | 55        |
| 197 | Opposing roles of conventional and novel PKC isoforms in Hippo-YAP pathway regulation. Cell<br>Research, 2015, 25, 985-988.                                                                                                 | 5.7 | 54        |
| 198 | Human homologue of Drosophila CNK interacts with Ras effector proteins Raf and Rlf 1. FASEB<br>Journal, 2003, 17, 2048-2060.                                                                                                | 0.2 | 53        |

| #   | Article                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | CLOCK Acetylates ASS1 to Drive Circadian Rhythm of Ureagenesis. Molecular Cell, 2017, 68, 198-209.e6.                                                                                           | 4.5  | 53        |
| 200 | The Vam6-Gtr1/Gtr2 pathway activates TORC1 in response to amino acids in fission yeast. Journal of Cell Science, 2012, 125, 1920-8.                                                             | 1.2  | 52        |
| 201 | YAP and MRTF-A, transcriptional co-activators of RhoA-mediated gene expression, are critical for glioblastoma tumorigenicity. Oncogene, 2018, 37, 5492-5507.                                    | 2.6  | 49        |
| 202 | Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling. Nature Communications, 2015, 6, 8283.                                     | 5.8  | 47        |
| 203 | <scp>PARD</scp> 3 induces <scp>TAZ</scp> activation and cell growth by promoting <scp>LATS</scp> 1 and <scp>PP</scp> 1 interaction. EMBO Reports, 2015, 16, 975-985.                            | 2.0  | 46        |
| 204 | The oncometabolite 2-hydroxyglutarate produced by mutant IDH1 sensitizes cells to ferroptosis. Cell<br>Death and Disease, 2019, 10, 755.                                                        | 2.7  | 46        |
| 205 | D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth. Oncotarget, 2015, 6, 8606-8620.                     | 0.8  | 46        |
| 206 | The SIN1-PH Domain Connects mTORC2 to PI3K. Cancer Discovery, 2015, 5, 1127-1129.                                                                                                               | 7.7  | 44        |
| 207 | Structural insights into TSC complex assembly and GAP activity on Rheb. Nature Communications, 2021, 12, 339.                                                                                   | 5.8  | 44        |
| 208 | A Critical Role for <i>Rictor</i> in T Lymphopoiesis. Journal of Immunology, 2012, 189, 1850-1857.                                                                                              | 0.4  | 42        |
| 209 | SIRT5 deficiency suppresses mitochondrial ATP production and promotes AMPK activation in response to energy stress. PLoS ONE, 2019, 14, e0211796.                                               | 1.1  | 40        |
| 210 | YAP and TAZ regulate cell volume. Journal of Cell Biology, 2019, 218, 3472-3488.                                                                                                                | 2.3  | 39        |
| 211 | Critical roles of phosphoinositides and NF2 in Hippo pathway regulation. Genes and Development, 2020, 34, 511-525.                                                                              | 2.7  | 39        |
| 212 | The Dominant Negative Ras Mutant, N17Ras, Can Inhibit Signaling Independently of Blocking Ras<br>Activation. Journal of Biological Chemistry, 2000, 275, 8854-8862.                             | 1.6  | 38        |
| 213 | Hippo signalling maintains ER expression and ER+ breast cancer growth. Nature, 2021, 591, E1-E10.                                                                                               | 13.7 | 38        |
| 214 | NLK phosphorylates Raptor to mediate stress-induced mTORC1 inhibition. Genes and Development, 2015, 29, 2362-2376.                                                                              | 2.7  | 37        |
| 215 | RAG GTPases in nutrient-mediated TOR signaling pathway. Cell Cycle, 2009, 8, 1014-1018.                                                                                                         | 1.3  | 34        |
| 216 | Netrin-1 exerts oncogenic activities through enhancing Yes-associated protein stability. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7255-7260. | 3.3  | 34        |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | The two sides of Hippo pathway in cancer. Seminars in Cancer Biology, 2022, 85, 33-42.                                                                                                                                    | 4.3 | 34        |
| 218 | Essential Functions of Protein Tyrosine Phosphatases Ptp2 and Ptp3 and Rim11 Tyrosine<br>Phosphorylation in <i>Saccharomyces cerevisiae</i> Meiosis and Sporulation. Molecular Biology of<br>the Cell, 2000, 11, 663-676. | 0.9 | 33        |
| 219 | Elite control of HIV: p21 (waf-1/cip-1) at its best. Cell Cycle, 2012, 11, 4097-4098.                                                                                                                                     | 1.3 | 32        |
| 220 | The mechanisms of IDH mutations in tumorigenesis. Cell Research, 2012, 22, 1102-1104.                                                                                                                                     | 5.7 | 32        |
| 221 | Cell type-dependent function of LATS1/2 in cancer cell growth. Oncogene, 2019, 38, 2595-2610.                                                                                                                             | 2.6 | 29        |
| 222 | YAP plays a crucial role in the development of cardiomyopathy in lysosomal storage diseases. Journal of Clinical Investigation, 2021, 131, .                                                                              | 3.9 | 29        |
| 223 | Muscle atrophy in transgenic mice expressing a human TSC1 transgene. FEBS Letters, 2006, 580, 5621-5627.                                                                                                                  | 1.3 | 28        |
| 224 | Mst Out and HCC In. Cancer Cell, 2009, 16, 363-364.                                                                                                                                                                       | 7.7 | 28        |
| 225 | <i>L2hgdh</i> Deficiency Accumulates <scp>l</scp> -2-Hydroxyglutarate with Progressive<br>Leukoencephalopathy and Neurodegeneration. Molecular and Cellular Biology, 2017, 37, .                                          | 1.1 | 27        |
| 226 | IDH1 mutant structures reveal a mechanism of dominant inhibition. Cell Research, 2010, 20, 1279-1281.                                                                                                                     | 5.7 | 24        |
| 227 | mTOR in podocyte function. Cell Cycle, 2011, 10, 3415-3416.                                                                                                                                                               | 1.3 | 24        |
| 228 | YAP/TAZ phase separation for transcription. Nature Cell Biology, 2020, 22, 357-358.                                                                                                                                       | 4.6 | 24        |
| 229 | EIF3H Orchestrates Hippo Pathway–Mediated Oncogenesis via Catalytic Control of YAP Stability.<br>Cancer Research, 2020, 80, 2550-2563.                                                                                    | 0.4 | 24        |
| 230 | The Zscan4-Tet2 Transcription Nexus Regulates Metabolic Rewiring and Enhances Proteostasis to<br>Promote Reprogramming. Cell Reports, 2020, 32, 107877.                                                                   | 2.9 | 22        |
| 231 | Differential effect of glucose deprivation on MAPK activation in drug sensitive human breast<br>carcinoma MCF-7 and multidrug resistant MCF-7/ADR cells. Molecular and Cellular Biochemistry, 1997,<br>170, 23-30.        | 1.4 | 21        |
| 232 | Polycystic kidney disease: a Hippo connection. Genes and Development, 2018, 32, 737-739.                                                                                                                                  | 2.7 | 20        |
| 233 | YAP inhibition blocks uveal melanogenesis driven by GNAQ or GNA11 mutations. Molecular and Cellular Oncology, 2015, 2, e970957.                                                                                           | 0.3 | 18        |
| 234 | Measurements of TSC2 GAP Activity Toward Rheb. Methods in Enzymology, 2006, 407, 46-54.                                                                                                                                   | 0.4 | 17        |

| #   | Article                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Hippo kinase loss contributes to del(20q) hematologic malignancies through chronic innate immune<br>activation. Blood, 2019, 134, 1730-1744.                                                          | 0.6  | 17        |
| 236 | BRCA1/BARD1-dependent ubiquitination of NF2 regulates Hippo-YAP1 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7363-7370.                    | 3.3  | 17        |
| 237 | DNA–PK facilitates <i>piggyBac</i> transposition by promoting paired-end complex formation.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7408-7413. | 3.3  | 16        |
| 238 | Rapid diagnosis of IDH1-mutated gliomas by 2-HG detection with gas chromatography mass spectrometry. Laboratory Investigation, 2019, 99, 588-598.                                                     | 1.7  | 16        |
| 239 | Amino Acid Signaling to TOR Activation: Vam6 Functioning as a Gtr1 GEF. Molecular Cell, 2009, 35, 543-545.                                                                                            | 4.5  | 14        |
| 240 | Deregulation and Therapeutic Potential of the Hippo Pathway in Cancer. Annual Review of Cancer<br>Biology, 2018, 2, 59-79.                                                                            | 2.3  | 14        |
| 241 | YAP as oncotarget in uveal melanoma. Oncoscience, 2014, 1, 480-481.                                                                                                                                   | 0.9  | 14        |
| 242 | <scp>SIRT</scp> 7 deacetylates <scp>DDB</scp> 1 and suppresses the activity of the <scp>CRL</scp> 4 E3<br>ligase complexes. FEBS Journal, 2017, 284, 3619-3636.                                       | 2.2  | 12        |
| 243 | Coâ€occurrence of <i>BAP1</i> and <i>SF3B1</i> mutations in uveal melanoma induces cellular senescence. Molecular Oncology, 2022, 16, 607-629.                                                        | 2.1  | 12        |
| 244 | Hippo pathway regulation by phosphatidylinositol transfer protein and phosphoinositides. Nature<br>Chemical Biology, 2022, 18, 1076-1086.                                                             | 3.9  | 12        |
| 245 | Transcription and processing: multilayer controls of RNA biogenesis by the Hippo pathway. EMBO<br>Journal, 2014, 33, 942-944.                                                                         | 3.5  | 9         |
| 246 | TAZ Represses the Neuronal Commitment of Neural Stem Cells. Cells, 2020, 9, 2230.                                                                                                                     | 1.8  | 9         |
| 247 | Harness the Power: New Insights into the Inhibition of YAP/ Yorkie. Developmental Cell, 2009, 16, 321-322.                                                                                            | 3.1  | 8         |
| 248 | Determining the Phosphorylation Status of Hippo Components YAP and TAZ Using Phos-tag. Methods in<br>Molecular Biology, 2019, 1893, 281-287.                                                          | 0.4  | 7         |
| 249 | Non-radioactive LATS in vitro Kinase Assay. Bio-protocol, 2017, 7, .                                                                                                                                  | 0.2  | 7         |
| 250 | Inducible expression of a mutant form of MEK1 in Swiss 3T3 cells. , 1997, 67, 367-377.                                                                                                                |      | 6         |
| 251 | Substrate Selectivity APPLies to Akt. Cell, 2008, 133, 399-400.                                                                                                                                       | 13.5 | 6         |
| 252 | Micro(RNA) Managing by mTORC1. Molecular Cell, 2015, 57, 575-576.                                                                                                                                     | 4.5  | 6         |

| #   | Article                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Rheb regulates nuclear mTORC1 activity independent of farnesylation. Cell Chemical Biology, 2022, 29, 1037-1045.e4.                                                                   | 2.5  | 6         |
| 254 | The Hippo pathway mediates Semaphorin signaling. Science Advances, 2022, 8, .                                                                                                         | 4.7  | 6         |
| 255 | An alternative DNA damage pathway to apoptosis in hematological cancers. Nature Medicine, 2014, 20,<br>587-588.                                                                       | 15.2 | 5         |
| 256 | Hippo Pathway Key to Ploidy Checkpoint. Cell, 2014, 158, 695-696.                                                                                                                     | 13.5 | 3         |
| 257 | Colonic epithelium rejuvenation through <scp>YAP</scp> / <scp>TAZ</scp> . EMBO Journal, 2018, 37, 164-166.                                                                            | 3.5  | 3         |
| 258 | Regulation of YAP and TAZ Transcription Co-activators. , 2013, , 71-87.                                                                                                               |      | 2         |
| 259 | Glycoholics Anonymous: Cancer Sobers Up with mTORC1. Cancer Cell, 2016, 29, 432-434.                                                                                                  | 7.7  | 2         |
| 260 | Regulation of the Ras-MAPK Pathway at the Level of Ras and Raf. , 2002, 24, 49-66.                                                                                                    |      | 2         |
| 261 | Rag GTPases in TORC1 Activation and Nutrient Signaling. The Enzymes, 2010, 27, 75-87.                                                                                                 | 0.7  | 1         |
| 262 | Semaphorin 4D activates the MAPK pathway downstream of plexinâ€B1. FASEB Journal, 2006, 20, LB75.                                                                                     | 0.2  | 0         |
| 263 | TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. Journal of Cell Biology, 2008, 183, i1-i1. | 2.3  | Ο         |
| 264 | Protocols for measuring phosphorylation, subcellular localization, and kinase activity of Hippo pathway components YAP and LATS in cultured cells. STAR Protocols, 2022, 3, 101102.   | 0.5  | 0         |