List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1050264/publications.pdf Version: 2024-02-01

CAITI HASAN

#	Article	IF	CITATIONS
1	Members of a family of drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron, 1994, 12, 35-49.	8.1	351
2	The <i>Swiss Cheese</i> Mutant Causes Glial Hyperwrapping and Brain Degeneration in <i>Drosophila</i> . Journal of Neuroscience, 1997, 17, 7425-7432.	3.6	245
3	Normal Phototransduction in Drosophila Photoreceptors Lacking an InsP3 Receptor Gene. Molecular and Cellular Neurosciences, 2000, 15, 429-445.	2.2	125
4	Preferential Expression of Biotransformation Enzymes in the Olfactory Organs of Drosophila melanogaster, the Antennae. Journal of Biological Chemistry, 1999, 274, 10309-10315.	3.4	117
5	Intracellular Ca ²⁺ signaling and store-operated Ca ²⁺ entry are required in <i>Drosophila</i> neurons for flight. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10326-10331.	7.1	114
6	Disruption of the IP3 receptor gene of Drosophila affects larval metamorphosis and ecdysone release. Current Biology, 1997, 7, 500-509.	3.9	106
7	Reduced Odor Responses from Antennal Neurons of G _q α, Phospholipase Cβ, and <i>rdgA</i> Mutants in <i>Drosophila</i> Support a Role for a Phospholipid Intermediate in Insect Olfactory Transduction. Journal of Neuroscience, 2008, 28, 4745-4755.	3.6	104
8	Complete nucleotide sequence of an unusual mobile element from trypanosoma brucei. Cell, 1984, 37, 333-341.	28.9	95
9	Molecular coevolution within a Drosophila clock gene. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4475-4480.	7.1	78
10	Loss of Flight and Associated Neuronal Rhythmicity in Inositol 1,4,5-Trisphosphate Receptor Mutants of Drosophila. Journal of Neuroscience, 2004, 24, 7869-7878.	3.6	74
11	Store-Operated Calcium Entry through Orai Is Required for Transcriptional Maturation of the Flight Circuit in <i>Drosophila</i> . Journal of Neuroscience, 2015, 35, 13784-13799.	3.6	69
12	Altered lipid homeostasis in <i>Drosophila</i> InsP3 receptor mutants leads to obesity and hyperphagia. DMM Disease Models and Mechanisms, 2013, 6, 734-44.	2.4	60
13	Genetic Dissection of itpr Gene Function Reveals a Vital Requirement in Aminergic Cells of Drosophila Larvae. Genetics, 2004, 166, 225-236.	2.9	52
14	A Genetic RNAi Screen for IP3/Ca2+ Coupled GPCRs in Drosophila Identifies the PdfR as a Regulator of Insect Flight. PLoS Genetics, 2013, 9, e1003849.	3.5	52
15	IP3 receptors and Ca2+ entry. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1092-1100.	4.1	52
16	Ribosomal RNA genes of Trypanosoma brucei: Mapping the regions specifying the six small ribosomal RNAs. Gene, 1984, 27, 75-86.	2.2	50
17	Inositol 1,4,5-Trisphosphate Receptor and dSTIM Function in <i>Drosophila</i> Insulin-Producing Neurons Regulates Systemic Intracellular Calcium Homeostasis and Flight. Journal of Neuroscience, 2010, 30, 1301-1313.	3.6	48
18	norpAanditprmutants reveal roles for phospholipase C and inositol (1,4,5)- trisphosphate receptor inDrosophila melanogasterrenal function. Journal of Experimental Biology, 2003, 206, 901-911.	1.7	47

GAITI HASAN

#	Article	IF	CITATIONS
19	Store-independent modulation of Ca2+ entry through Orai by Septin 7. Nature Communications, 2016, 7, 11751.	12.8	44
20	Functional Properties of the Drosophila melanogaster Inositol 1,4,5-Trisphosphate Receptor Mutants. Biophysical Journal, 2004, 86, 3634-3646.	0.5	43
21	Neural Control of Wing Coordination in Flies. Current Biology, 2015, 25, 80-86.	3.9	43
22	Compensation of Inositol 1,4,5-Trisphosphate Receptor Function by Altering Sarco-Endoplasmic Reticulum Calcium ATPase Activity in the Drosophila Flight Circuit. Journal of Neuroscience, 2006, 26, 8278-8288.	3.6	42
23	The inositol 1,4,5-trisphosphate receptor is required for maintenance of olfactory adaptation inDrosophila antennae. , 2000, 43, 282-288.		41
24	Interactions Between the Inositol 1,4,5-Trisphosphate and Cyclic AMP Signaling Pathways Regulate Larval Molting in Drosophila. Genetics, 2001, 158, 309-318.	2.9	38
25	Altered Levels of Gq Activity Modulate Axonal Pathfinding inDrosophila. Journal of Neuroscience, 2002, 22, 4499-4508.	3.6	36
26	Maturation of a central brain flight circuit in Drosophila requires Fz2/Ca2+ signaling. ELife, 2015, 4, .	6.0	36
27	The InsP3 receptor: its role in neuronal physiology and neurodegeneration. BioEssays, 2005, 27, 1035-1047.	2.5	32
28	Mutant IP3 receptors attenuate store-operated Ca2+ entry by destabilizing STIM-Orai interactions in <i>Drosophila</i> neurons. Journal of Cell Science, 2016, 129, 3903-3910.	2.0	32
29	The genetics of calcium signaling in Drosophila melanogaster. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1269-1282.	2.4	30
30	Mutants in Drosophila TRPC Channels Reduce Olfactory Sensitivity to Carbon Dioxide. PLoS ONE, 2012, 7, e49848.	2.5	29
31	A pupal transcriptomic screen identifies Ral as a target of store-operated calcium entry in Drosophila neurons. Scientific Reports, 2017, 7, 42586.	3.3	29
32	Ribosomal RNA genes ofTrypanosoma brucei.Cloning of a rRNA gene containing a mobile element. Nucleic Acids Research, 1982, 10, 6747-6761.	14.5	28
33	Drosophila larval to pupal switch under nutrient stress requires IP3R/Ca2+ signalling in glutamatergic interneurons. ELife, 2016, 5, .	6.0	28
34	The Inositol 1,4,5-Triphosphate Receptor Expression in Drosophila Suggests a Role for IP3 Signalling in Muscle Development and Adult Chemosensory Functions. Developmental Biology, 1995, 171, 564-577.	2.0	27
35	Drosophila "enhancer-trap―transposants: Gene expression in chemosensory and motor pathways and identification of mutants affected in smell and taste ability. Journal of Genetics, 1990, 69, 151-168.	0.7	26
36	Sequencing and exon mapping of the inositol 1,4,5-trisphosphate receptor cDNA from Drosophila embryos suggests the presence of differentially regulated forms of RNA and protein. Gene, 1999, 233, 271-276.	2.2	25

#	Article	IF	CITATIONS
37	Mutants in Phospholipid Signaling Attenuate the Behavioral Response of Adult Drosophila to Trehalose. Chemical Senses, 2010, 35, 663-673.	2.0	24
38	Flight and Climbing Assay for Assessing Motor Functions in Drosophila. Bio-protocol, 2018, 8, e2742.	0.4	24
39	Expression patterns of two putative odorant-binding proteins in the olfactory organs of Drosophila melanogaster have different implications for their functions. Cell and Tissue Research, 2000, 300, 181-192.	2.9	24
40	Inositol 1,4,5- Trisphosphate Receptor Function in Drosophila Insulin Producing Cells. PLoS ONE, 2009, 4, e6652.	2.5	22
41	Stable STIM1 Knockdown in Self-Renewing Human Neural Precursors Promotes Premature Neural Differentiation. Frontiers in Molecular Neuroscience, 2018, 11, 178.	2.9	22
42	Loss of IP3 receptor function in neuropeptide secreting neurons leads to obesity in adult Drosophila. BMC Neuroscience, 2013, 14, 157.	1.9	21
43	Regulation of Store-Operated Ca2+ Entry by Septins. Frontiers in Cell and Developmental Biology, 2016, 4, 142.	3.7	20
44	FMRFa receptor stimulated Ca2+ signals alter the activity of flight modulating central dopaminergic neurons in Drosophila melanogaster. PLoS Genetics, 2018, 14, e1007459.	3.5	20
45	SEPT7 regulates Ca2+ entry through Orai channels in human neural progenitor cells and neurons. Cell Calcium, 2020, 90, 102252.	2.4	20
46	A Multicomponent Neuronal Response Encodes the Larval Decision to Pupariate upon Amino Acid Starvation. Journal of Neuroscience, 2018, 38, 10202-10219.	3.6	19
47	Extended Flight Bouts Require Disinhibition from GABAergic Mushroom Body Neurons. Current Biology, 2019, 29, 283-293.e5.	3.9	19
48	Molecular cloning of an olfactory gene from Drosophila melanogaster Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 9037-9041.	7.1	18
49	CRISPR-Cas-Induced Mutants Identify a Requirement for dSTIM in Larval Dopaminergic Cells of <i>Drosophila melanogaster</i> . G3: Genes, Genomes, Genetics, 2017, 7, 923-933.	1.8	16
50	<i>Drosophila</i> Mutants in Phospholipid Signaling Have Reduced Olfactory Responses as Adults and Larvae. Journal of Neurogenetics, 2009, 23, 303-312.	1.4	15
51	Synaptic Activity in Serotonergic Neurons Is Required for Air-Puff Stimulated Flight in Drosophila melanogaster. PLoS ONE, 2012, 7, e46405.	2.5	15
52	Modulation of flight and feeding behaviours requires presynaptic IP3Rs in dopaminergic neurons. ELife, 2020, 9, .	6.0	14
53	IP3R, store-operated Ca2+ entry and neuronal Ca2+ homoeostasis in <i>Drosophila</i> . Biochemical Society Transactions, 2012, 40, 279-281.	3.4	13
54	Spontaneous Ca2+ Influx in Drosophila Pupal Neurons Is Modulated by IP3-Receptor Function and Influences Maturation of the Flight Circuit. Frontiers in Molecular Neuroscience, 2017, 10, 111.	2.9	13

#	Article	IF	CITATIONS
55	Purkinje Neurons with Loss of STIM1 Exhibit Age-Dependent Changes in Gene Expression and Synaptic Components. Journal of Neuroscience, 2021, 41, 3777-3798.	3.6	13
56	Neuronal Calcium Signaling in Metabolic Regulation and Adaptation to Nutrient Stress. Frontiers in Neural Circuits, 2018, 12, 25.	2.8	12
57	Regulation of neuronal physiology by Ca2+ release through the IP3R. Current Opinion in Physiology, 2020, 17, 1-8.	1.8	12
58	IP3R mediated Ca2+ release regulates protein metabolism in <i>Drosophila</i> neuroendocrine cells: implications for development under nutrient stress. Development (Cambridge), 2017, 144, 1484-1489.	2.5	11
59	Genetic analysis of olfC demonstrates a role for the position-specific integrins in the olfactory system of Drosophila melanogaster. Molecular Genetics and Genomics, 2000, 263, 498-504.	2.4	10
60	Store-operated Ca2+ entry regulates neuronal gene expression and function. Current Opinion in Neurobiology, 2022, 73, 102520.	4.2	10
61	Functional properties of a pore mutant in theDrosophila melanogasterinositol 1,4,5-trisphosphate receptor. FEBS Letters, 2004, 575, 95-98.	2.8	9
62	Store-Operated Ca2+ Entry in Drosophila Primary Neuronal Cultures. Methods in Molecular Biology, 2018, 1843, 125-136.	0.9	9
63	ER-Ca2+ sensor STIM regulates neuropeptides required for development under nutrient restriction in Drosophila. PLoS ONE, 2019, 14, e0219719.	2.5	9
64	dSTIM- and Ral/Exocyst-Mediated Synaptic Release from Pupal Dopaminergic Neurons Sustains Drosophila Flight. ENeuro, 2018, 5, ENEURO.0455-17.2018.	1.9	9
65	The enigma of store-operated Ca2+-entry in neurons: answers from the Drosophila flight circuit. Frontiers in Neural Circuits, 2010, 4, 10.	2.8	8
66	Functional Complementation of <i>Drosophila itpr</i> Mutants by Rat <i>ltpr1</i> . Journal of Neurogenetics, 2012, 26, 328-337.	1.4	8
67	Ectopic expression of a Drosophila InsP3R channel mutant has dominant-negative effects in vivo. Cell Calcium, 2006, 39, 187-196.	2.4	7
68	Homeostasis of glutamate neurotransmission is altered in Drosophila Inositol 1,4,5-trisphosphate receptor mutants. Invertebrate Neuroscience, 2007, 7, 137-147.	1.8	7
69	SEPT7â€mediated regulation of Ca 2+ entry through Orai channels requires other septin subunits. Cytoskeleton, 2019, 76, 104-114.	2.0	7
70	Genetic characterization of Spinocerebellar ataxia 1 in a South Indian cohort. BMC Medical Genetics, 2014, 15, 114.	2.1	6
71	Deficits Associated With Loss of STIM1 in Purkinje Neurons Including Motor Coordination Can Be Rescued by Loss of Septin 7. Frontiers in Cell and Developmental Biology, 2021, 9, 794807.	3.7	6
72	Patterns of Gene Expression in Drosophila InsP3 Receptor Mutant Larvae Reveal a Role for InsP3 Signaling in Carbohydrate and Energy Metabolism. PLoS ONE, 2011, 6, e24105.	2.5	5

#	Article	IF	CITATIONS
73	Serotonergic neurons of the Drosophila air-puff-stimulated flight circuit. Journal of Biosciences, 2014, 39, 575-583.	1.1	5
74	Implications of the <i>Sap47</i> null mutation for synapsin phosphorylation, longevity, climbing, and behavioural plasticity in adult <i>Drosophila</i> . Journal of Experimental Biology, 2019, 222, .	1.7	5
75	Development of a functional assay for Ca2+ release activity of IP3R and expression of an IP3R gene fragment in the baculovirus-insect cell system. Gene, 1997, 190, 151-156.	2.2	4
76	Measurement of Store-Operated Calcium Entry in Human Neural Cells: From Precursors to Differentiated Neurons. Methods in Molecular Biology, 2019, 2029, 257-271.	0.9	4
77	Control of protein translation by IP ₃ R-mediated Ca ²⁺ release in <i>Drosophila</i> neuroendocrine cells. Fly, 2017, 11, 290-296.	1.7	3
78	A chromosomal walk in the region of polytene bands 7C-D of theDrosophila X chromosome. Journal of Genetics, 1989, 68, 139-146.	0.7	2
79	The Early Years of Drosophila Chemosensory Genetics in Mumbai's Tata Institute of Fundamental Research. Journal of Neurogenetics, 2012, 26, 264-266.	1.4	2
80	<i>Drosophila</i> InsP ₃ R mutants and their effects on cellular and systemic physiology. Environmental Sciences Europe, 2012, 1, 70-77.	5.5	2
81	Ral function in muscle is required for flight maintenance in <i>Drosophila</i> . Small GTPases, 2020, 11, 1-6.	1.6	1
82	IP3-mediated Ca2+ signals regulate larval to pupal transition under nutrient stress through the H3K36 methyltransferase Set2. Development (Cambridge), 2021, 148, .	2.5	1
83	Intracellular signaling in neurons: unraveling specificity, compensatory mechanisms and essential gene function. Current Opinion in Neurobiology, 2013, 23, 62-67.	4.2	0
84	Surviving nutritional deprivation during development: neuronal intracellular calcium signaling is critical. International Journal of Developmental Biology, 2020, 64, 239-246.	0.6	0
85	Spinocerebellar ataxia 1: case and cohort-based studies in India. Current Science, 2015, 109, 889.	0.8	0
86	Spinocerebellar ataxia 1: case and cohort-based studies in India. Current Science, 2015, 109, 889.	0.8	0
87	Extended Flight Bouts Require Disinhibition from GABAergic Mushroom Body Neurons. SSRN Electronic Journal, 0, , .	0.4	0
88	Two photon imaging of calcium responses in murine Purkinje neurons. STAR Protocols, 2022, 3, 101105.	1.2	0
89	Title is missing!. , 2019, 14, e0219719.		0