Masahiko Okai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1050232/publications.pdf Version: 2024-02-01

Μλελμικό Οκλι

#	Article	IF	CITATIONS
1	Ethanol Fermentation by High-Stress-Tolerance Aquatic Yeasts and Their Mutants. Advances in Microbiology, 2021, 11, 616-629.	0.6	3
2	Antibiotic-resistance of Fecal Coliforms at the Bottom of the Tama River, Tokyo. Biocontrol Science, 2019, 24, 173-178.	0.8	5
3	Crystal structure of a Ca2+-dependent regulator of flagellar motility reveals the open-closed structural transition. Scientific Reports, 2018, 8, 2014.	3.3	7
4	Enzymatic properties and the gene structure of a cold-adapted laminarinase from Pseudoalteromonas species LA. Journal of Bioscience and Bioengineering, 2018, 126, 169-175.	2.2	9
5	Crystal structure of dibenzothiophene sulfone monooxygenase BdsA from <i>Bacillus subtilis</i> WU‣2B. Proteins: Structure, Function and Bioinformatics, 2017, 85, 1171-1177.	2.6	17
6	Insight into the transition between the open and closed conformations of Thermus thermophilus carboxypeptidase. Biochemical and Biophysical Research Communications, 2017, 484, 787-793.	2.1	7
7	Isolation of aquatic yeasts with the ability to neutralize acidic media, from an extremely acidic river near Japan's Kusatsu-Shirane Volcano. Journal of Bioscience and Bioengineering, 2017, 124, 43-46.	2.2	9
8	Neutralization of acidic drainage by Cryptococcus sp. T1 immobilized in alginate beads. Bioscience, Biotechnology and Biochemistry, 2017, 81, 2216-2224.	1.3	3
9	<i>Citeromyces matritensis</i> M37 is a salt-tolerant yeast that produces ethanol from salted algae. Canadian Journal of Microbiology, 2017, 63, 20-26.	1.7	12
10	Continuous Saccharification of Laminarin by Immobilized Laminarinase ULam111 Followed by Ethanol Fermentation with a Marine-Derived Yeast. Advances in Microbiology, 2017, 07, 387-403.	0.6	7
11	High Ethanol Production by Marine-Derived Yeasts- <i>Saccharomyces cerevisiae</i> under Stress Pressures. Advances in Microbiology, 2017, 07, 349-357.	0.6	4
12	Draft Genome Sequence of a Benzo[<i>a</i>]pyrene-Degrading Bacterium, <i>Olleya</i> sp. Strain ITB9. Genome Announcements, 2015, 3, .	0.8	7
13	A new target region for changing the substrate specificity of amine transaminases. Scientific Reports, 2015, 5, 10753.	3.3	53
14	Bioethanol production from mixed biomass (waste of Undaria pinnatifida processing and paper) Tj ETQq0 0 0 rgB 771-776.	T /Overloo 1.6	k 10 Tf 50 2 10
15	Isolation and characterization of benzo[<i>a</i>]pyrene-degrading bacteria from the Tokyo Bay area and Tama River in Japan. FEMS Microbiology Letters, 2015, 362, fnv143.	1.8	32
16	Â <scp>L</scp> - <i>allo</i> -Threonine aldolase with an H128Y/S292R mutation from <i>Aeromonas jandaei</i> DK-39 reveals the structural basis of changes in substrate stereoselectivity. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1695-1703.	2.5	19
17	Crystal structure of the novel haloalkane dehalogenase DatA from Agrobacterium tumefaciens C58 reveals a special halide-stabilizing pair and enantioselectivity mechanism. Applied Microbiology and Biotechnology, 2014, 98, 8573-8582.	3.6	13
18	Crystal Structure and Site-Directed Mutagenesis Analyses of Haloalkane Dehalogenase LinB from Sphingobium sp. Strain MI1205. Journal of Bacteriology, 2013, 195, 2642-2651.	2.2	20

Masahiko Okai

#	Article	IF	CITATIONS
19	Calaxin drives sperm chemotaxis by Ca ²⁺ -mediated direct modulation of a dynein motor. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20497-20502.	7.1	80
20	Expression, purification, crystallization and preliminary X-ray analysis of 4-hydroxy-3-methyl-2-keto-pentanoate aldolase (asHPAL) from <i>Arthrobacter simplex</i> strain AKU 626. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 958-961.	0.7	1
21	High pressure refolding, purification, and crystallization of flavin reductase from Sulfolobus tokodaii strain 7. Protein Expression and Purification, 2012, 84, 214-218.	1.3	9
22	Expression, purification, crystallization and preliminary X-ray analysis of carbonyl reductase S1 from <i>Candida magnoliae</i> . Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 540-542.	0.7	2
23	Crystallization and preliminary X-ray analysis of the haloalkane dehalogenase DatA fromAgrobacterium tumefaciensC58. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 652-654.	0.7	2
24	The Crystal Structure of I-Sorbose Reductase from Gluconobacter frateurii Complexed with NADPH and I-Sorbose. Journal of Molecular Biology, 2011, 407, 543-555.	4.2	17
25	1P012 Structural analysis for substrate recognition of carbonyl reductase S1(Protein:Structure,The) Tj ETQq1	1 0.784314 0.1	rgBT /Overlo
26	2P030 The crystal structure of L-sorbose reductase from Gluconobacter frateurii complexed with NADPH and L-sorbose(The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, S87.	0.1	0
27	Crystal Structure of γ-Hexachlorocyclohexane Dehydrochlorinase LinA from Sphingobium japonicum UT26. Journal of Molecular Biology, 2010, 403, 260-269.	4.2	38
28	Crystallization and preliminary X-ray analysis of γ-hexachlorocyclohexane dehydrochlorinase LinA fromSphingobium japonicumUT26. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 822-824.	0.7	4
29	Molecular Mechanism of Distinct Salt-Dependent Enzyme Activity of Two Halophilic Nucleoside Diphosphate Kinases. Biophysical Journal, 2009, 96, 4692-4700.	0.5	18
30	A unique catalytic triad revealed by the crystal structure of APE0912, a shortâ€chain dehydrogenase/reductase family protein from <i>Aeropyrum pernix</i> K1. Proteins: Structure, Function and Bioinformatics, 2008, 70, 1640-1645.	2.6	5
31	Crystal structure of the proline iminopeptidaseâ€related protein TTHA1809 from <i>Thermus thermophilus</i> HB8. Proteins: Structure, Function and Bioinformatics, 2008, 70, 1646-1649.	2.6	3
32	Crystal Structures of the Short-Chain Flavin Reductase HpaC fromSulfolobus tokodaiiStrain 7 in Its Three States: NAD(P)+-Free, NAD+-Bound, and NADP+-Boundâ€,‡. Biochemistry, 2006, 45, 5103-5110.	2.5	33
33	Crystal structure of monomeric sarcosine oxidase from Bacillus sp. NS-129 reveals multiple conformations at the active-site loop. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2005, 81, 220-224.	3.8	9
34	Crystal structure of the short-chain flavin reductase HpaC from Sulfolobus tokodaii strain 7. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2005, 81, 229-232.	3.8	0