Patrick Fach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10502289/publications.pdf

Version: 2024-02-01

all docs

		117625	91884	
88	5,305	34	69	
papers	citations	h-index	g-index	
80	80	80	7410	

times ranked

docs citations

citing authors

#	Article	IF	CITATIONS
1	Revisiting the STEC Testing Approach: Using espK and espV to Make Enterohemorrhagic Escherichia coli (EHEC) Detection More Reliable in Beef. Frontiers in Microbiology, 2016, 7, 1.	3.5	1,478
2	Diagnostic Real-Time PCR for Detection of Salmonella in Food. Applied and Environmental Microbiology, 2004, 70, 7046-7052.	3.1	419
3	Detection by 5′-nuclease PCR of Shiga-toxin producing Escherichia coli O26, O55, O91, O103, O111, O113, O145 and O157:H7, associated with the world's most frequent clinical cases. Molecular and Cellular Probes, 2004, 18, 185-192.	2.1	245
4	High-throughput screening of tick-borne pathogens in Europe. Frontiers in Cellular and Infection Microbiology, 2014, 4, 103.	3.9	209
5	Making Internal Amplification Control Mandatory for Diagnostic PCR. Journal of Clinical Microbiology, 2003, 41, 5835-5835.	3.9	194
6	Virulence gene profiling of enterohemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli strains: a basis for molecular risk assessment of typical and atypical EPEC strains. BMC Microbiology, 2011, 11, 142.	3.3	111
7	Interlaboratory diagnostic accuracy of a Salmonella specific PCR-based method. International Journal of Food Microbiology, 2003, 89, 241-249.	4.7	105
8	Comparison of PCR-ELISA and LightCycler real-time PCR assays for detecting Salmonella spp. in milk and meat samples. Molecular and Cellular Probes, 2004, 18, 409-420.	2.1	104
9	Micro-array for the identification of Shiga toxin-producing Escherichia coli (STEC) seropathotypes associated with Hemorrhagic Colitis and Hemolytic Uremic Syndrome in humans. International Journal of Food Microbiology, 2010, 142, 318-329.	4.7	98
10	Screening food raw materials for the presence of the world's most frequent clinical cases of Shiga toxin-encoding Escherichia coli O26, O103, O111, O145 and O157. International Journal of Food Microbiology, 2007, 113, 284-288.	4.7	89
11	A comparative study of digital RT-PCR and RT-qPCR for quantification of Hepatitis A virus and Norovirus in lettuce and water samples. International Journal of Food Microbiology, 2015, 201, 17-26.	4.7	87
12	Use of Clustered Regularly Interspaced Short Palindromic Repeat Sequence Polymorphisms for Specific Detection of Enterohemorrhagic Escherichia coli Strains of Serotypes O26:H11, O45:H2, O103:H2, O111:H8, O121:H19, O145:H28, and O157:H7 by Real-Time PCR. Journal of Clinical Microbiology, 2012, 50, 4035-4040.	3.9	86
13	Neurotoxin Gene Profiling of Clostridium botulinum Types C and D Native to Different Countries within Europe. Applied and Environmental Microbiology, 2012, 78, 3120-3127.	3.1	85
14	Low-Density Macroarray Targeting Non-Locus of Enterocyte Effacement Effectors (<i>nle</i> Genes) and Major Virulence Factors of Shiga Toxin-Producing <i>Escherichia coli</i> (STEC): a New Approach for Molecular Risk Assessment of STEC Isolates. Applied and Environmental Microbiology, 2010, 76, 203-211.	3.1	75
15	Enterohemorrhagic <i>Escherichia coli</i> Hybrid Pathotype O80:H2 as a New Therapeutic Challenge. Emerging Infectious Diseases, 2016, 22, 1604-1612.	4.3	75
16	Specific Detection of Enteroaggregative Hemorrhagic Escherichia coli O104:H4 Strains by Use of the CRISPR Locus as a Target for a Diagnostic Real-Time PCR. Journal of Clinical Microbiology, 2012, 50, 3485-3492.	3.9	74
17	Towards a Molecular Definition of Enterohemorrhagic Escherichia coli (EHEC): Detection of Genes Located on O Island 57 as Markers To Distinguish EHEC from Closely Related Enteropathogenic E. coli Strains. Journal of Clinical Microbiology, 2013, 51, 1083-1088.	3.9	71
18	Detection by PCR-Enzyme-Linked Immunosorbent Assay of Clostridium botulinum in Fish and Environmental Samples from a Coastal Area in Northern France. Applied and Environmental Microbiology, 2002, 68, 5870-5876.	3.1	67

#	Article	IF	CITATIONS
19	Discrimination of Enterohemorrhagic Escherichia coli (EHEC) from Non-EHEC Strains Based on Detection of Various Combinations of Type III Effector Genes. Journal of Clinical Microbiology, 2013, 51, 3257-3262.	3.9	66
20	Identification of Genetic Markers for Differentiation of Shiga Toxin-Producing, Enteropathogenic, and Avirulent Strains of <i>Escherichia coli</i> O26. Applied and Environmental Microbiology, 2011, 77, 2275-2281.	3.1	65
21	Evaluation of the performance of LNA and MGB probes in 5′-nuclease PCR assays. Molecular and Cellular Probes, 2003, 17, 307-311.	2.1	62
22	Characterization of Shiga Toxin Subtypes and Virulence Genes in Porcine Shiga Toxin-Producing Escherichia coli. Frontiers in Microbiology, 2016, 7, 574.	3 . 5	62
23	Characterization of Colistin-Resistant Escherichia coli Isolated from Diseased Pigs in France. Frontiers in Microbiology, 2017, 8, 2278.	3.5	61
24	Genetic Diversity and Virulence Potential of Shiga Toxin-Producing Escherichia coli O113:H21 Strains Isolated from Clinical, Environmental, and Food Sources. Applied and Environmental Microbiology, 2014, 80, 4757-4763.	3.1	51
25	Digital RT-PCR method for hepatitis A virus and norovirus quantification in soft berries. International Journal of Food Microbiology, 2017, 243, 36-45.	4.7	51
26	Emerging Multidrug-Resistant Hybrid Pathotype Shiga Toxin–Producing <i>Escherichia coli</i> 080 and Related Strains of Clonal Complex 165, Europe. Emerging Infectious Diseases, 2018, 24, 2262-2269.	4.3	51
27	Characteristics of Emerging Human-Pathogenic Escherichia coli O26:H11 Strains Isolated in France between 2010 and 2013 and Carrying the <i>stx</i> _{2d} Gene Only. Journal of Clinical Microbiology, 2015, 53, 486-492.	3.9	50
28	Management of Animal Botulism Outbreaks: From Clinical Suspicion to Practical Countermeasures to Prevent or Minimize Outbreaks. Biosecurity and Bioterrorism, 2013, 11, S191-S199.	1.2	43
29	Diverse Virulence Gene Content of Shiga Toxin-Producing Escherichia coli from Finishing Swine. Applied and Environmental Microbiology, 2014, 80, 6395-6402.	3.1	43
30	Prevalence of Clostridium botulinum in food raw materials used in REPFEDs manufactured in France. International Journal of Food Microbiology, 2004, 91, 141-145.	4.7	41
31	Collaborative validation of a rapid method for efficient virus concentration in bottled water. International Journal of Food Microbiology, 2011, 145, S158-S166.	4.7	39
32	Detection and genotyping by real-time PCR of the staphylococcal enterotoxin genes sea to sej. Molecular and Cellular Probes, 2003, 17, 139-147.	2.1	38
33	Detection of Shiga Toxin-Producing <i>Escherichia coli</i> from Nonhuman Sources and Strain Typing. Microbiology Spectrum, 2014, 2, .	3.0	37
34	Emerging types of Shiga toxin-producing E. coli (STEC) O178 present in cattle, deer, and humans from Argentina and Germany. Frontiers in Cellular and Infection Microbiology, 2014, 4, 78.	3.9	35
35	Evaluation of a Polymerase Chain Reaction–Based Test for Detecting Salmonella spp. in Food Samples: Probelia Salmonella spp Journal of Food Protection, 1999, 62, 1387-1393.	1.7	34
36	Use of a robotic RNA purification protocol based on the NucliSens \hat{A}^{\otimes} easyMAG \hat{a} ,, for real-time RT-PCR detection of hepatitis A virus in bottled water. Journal of Virological Methods, 2009, 157, 80-83.	2.1	34

#	Article	IF	CITATIONS
37	Screening for Clostridium botulinum Type A, B, and E in Cooked Chilled Foods Containing Vegetables and Raw Material Using Polymerase Chain Reaction and Molecular Probes. Journal of Food Protection, 2001, 64, 201-207.	1.7	31
38	A strategy based on $5\hat{a}\in^2$ nuclease multiplex PCR to detect enterotoxin genes sea to sej of Staphylococcus aureus. Molecular and Cellular Probes, 2003, 17, 227-235.	2.1	31
39	Change in the Structure of Escherichia coli Population and the Pattern of Virulence Genes along a Rural Aquatic Continuum. Frontiers in Microbiology, 2017, 8, 609.	3.5	29
40	Quantification of Hepatitis E Virus in Naturally-Contaminated Pig Liver Products. Frontiers in Microbiology, 2016, 07, 1183.	3.5	28
41	Prevalence of tick-borne viruses in <i>lxodes ricinus</i> lxodes ricinuslxodes ricinus <td>2.0</td> <td>28</td>	2.0	28
42	A Novel High-Throughput Method for Molecular Detection of Human Pathogenic Viruses Using a Nanofluidic Real-Time PCR System. PLoS ONE, 2016, 11, e0147832.	2.5	28
43	Genotypes and virulence characteristics of Shiga toxin-producing Escherichia coli O104 strains from different origins and sources. International Journal of Medical Microbiology, 2013, 303, 410-421.	3.6	27
44	Towards an international standard for detection and typing botulinum neurotoxin-producing Clostridia types A, B, E and F in food, feed and environmental samples: A European ring trial study to evaluate a real-time PCR assay. International Journal of Food Microbiology, 2011, 145, S152-S157.	4.7	26
45	A multiplex real-time PCR assay targeting virulence and resistance genes in Salmonella entericaserotype Typhimurium. BMC Microbiology, 2011, 11, 151.	3.3	26
46	Targeted Amplicon Sequencing for Single-Nucleotide-Polymorphism Genotyping of Attaching and Effacing Escherichia coli O26:H11 Cattle Strains via a High-Throughput Library Preparation Technique. Applied and Environmental Microbiology, 2016, 82, 640-649.	3.1	26
47	Investigation of animal botulism outbreaks by PCR and standard methods. FEMS Immunology and Medical Microbiology, 1996, 13, 279-285.	2.7	25
48	Shiga Toxin-Producing Serogroup O91 Escherichia coli Strains Isolated from Food and Environmental Samples. Applied and Environmental Microbiology, 2017, 83, .	3.1	25
49	Accidental and deliberate microbiological contamination in the feed and food chains — How biotraceability may improve the response to bioterrorism. International Journal of Food Microbiology, 2011, 145, S123-S128.	4.7	23
50	Molecular Profiling of Escherichia coli O157:H7 and Non-O157 Strains Isolated from Humans and Cattle in Alberta, Canada. Journal of Clinical Microbiology, 2015, 53, 986-990.	3.9	23
51	The Escherichia coli Serogroup O1 and O2 Lipopolysaccharides Are Encoded by Multiple O-antigen Gene Clusters. Frontiers in Cellular and Infection Microbiology, 2017, 7, 30.	3.9	22
52	Variable tellurite resistance profiles of clinically-relevant Shiga toxin-producing Escherichia coli (STEC) influence their recovery from foodstuffs. Food Microbiology, 2016, 59, 32-42.	4.2	21
53	Detection, differentiation, and identification of botulinum neurotoxin serotypes C, CD, D, and DC by highly specific immunoassays and mass spectrometry. Analyst, The, 2016, 141, 5281-5297.	3.5	20
54	Genetic Diversity of the Flagellin Genes of Clostridium botulinum Groups I and II. Applied and Environmental Microbiology, 2013, 79, 3926-3932.	3.1	18

#	Article	IF	CITATIONS
55	Genetic Diversity and Pathogenic Potential of Attaching and Effacing Escherichia coli O26:H11 Strains Recovered from Bovine Feces in the United States. Applied and Environmental Microbiology, 2015, 81, 3671-3678.	3.1	18
56	New Insights into the Genetic Diversity of Clostridium botulinum Group III through Extensive Genome Exploration. Frontiers in Microbiology, 2016, 7, 757.	3.5	18
57	The utility of multiple molecular methods including whole genome sequencing as tools to differentiate Escherichia coli O157:H7 outbreaks. Eurosurveillance, 2015, 20, .	7.0	17
58	Sequence Variations in the Flagellar Antigen Genes fliCH25 and fliCH28 of Escherichia coli and Their Use in Identification and Characterization of Enterohemorrhagic E. coli (EHEC) O145:H25 and O145:H28. PLoS ONE, 2015, 10, e0126749.	2.5	16
59	Multiplex Real-Time PCR for Detecting and Typing <i>Clostridium botulinum</i> Group III Organisms and Their Mosaic Variants. Biosecurity and Bioterrorism, 2013, 11, S207-S214.	1.2	15
60	Molecular Gene Profiling of Clostridium botulinum Group III and Its Detection in Naturally Contaminated Samples Originating from Various European Countries. Applied and Environmental Microbiology, 2015, 81, 2495-2505.	3.1	15
61	Escherichia coli O80 hybrid pathotype strains producing Shiga toxin and ESBL: molecular characterization and potential therapeutic options. Journal of Antimicrobial Chemotherapy, 2020, 75, 537-542.	3.0	15
62	Molecular and Phenotypic Characterization of Escherichia coli O26:H8 among Diarrheagenic E. coli O26 Strains Isolated in Brazil. Applied and Environmental Microbiology, 2013, 79, 6847-6854.	3.1	14
63	Livers provide a reliable matrix for real-time PCR confirmation of avian botulism. Anaerobe, 2016, 38, 7-13.	2.1	13
64	Improved traceability of Shiga-toxin-producing Escherichia coli using CRISPRs for detection and typing. Environmental Science and Pollution Research, 2016, 23, 8163-8174.	5.3	13
65	The Mobilome; A Major Contributor to Escherichia coli stx2-Positive O26:H11 Strains Intra-Serotype Diversity. Frontiers in Microbiology, 2017, 8, 1625.	3.5	13
66	Development and Validation of a New Reliable Method for the Diagnosis of Avian Botulism. PLoS ONE, 2017, 12, e0169640.	2.5	13
67	Characterization and Virulence Potential of Serogroup O113 Shiga Toxin–Producing Escherichia coli Strains Isolated from Beef and Cattle in the United States. Journal of Food Protection, 2017, 80, 383-391.	1.7	12
68	High Throughput Screening of Antimicrobial Resistance Genes in Gram-Negative Seafood Bacteria. Microorganisms, 2022, 10, 1225.	3.6	10
69	Genetic Diversity of the fliC Genes Encoding the Flagellar Antigen H19 of Escherichia coli and Application to the Specific Identification of Enterohemorrhagic E. coli O121:H19. Applied and Environmental Microbiology, 2015, 81, 4224-4230.	3.1	9
70	Draft Genome Sequences of Human-Pathogenic Escherichia coli O26:H11 Strains Carrying the stx 2 Gene Only and Circulating in France. Genome Announcements, 2015, 3, .	0.8	7
71	Detection of Genetically Modified Corn (Bt176) in Spiked Cow Blood Samples by Polymerase Chain Reaction and Immunoassay Methods. Journal of AOAC INTERNATIONAL, 2005, 88, 654-664.	1.5	6
72	Validation of a real-time PCR based method for detection of Clostridium botulinum types C, D and their mosaic variants C-D and D-C in a multicenter collaborative trial. Anaerobe, 2013, 22, 31-37.	2.1	6

#	Article	IF	CITATIONS
73	Genetic Analysis and Detection of fliCH1 and fliCH12 Genes Coding for Serologically Closely Related Flagellar Antigens in Human and Animal Pathogenic Escherichia coli. Frontiers in Microbiology, 2016, 7, 135.	3.5	6
74	Diversity of Escherichia coli strains isolated from day-old broiler chicks, their environment and colibacillosis lesions in 80 flocks in France. Veterinary Microbiology, 2021, 252, 108923.	1.9	6
75	Identification of Shiga-Toxin-Producing Shigella Infections in Travel and Non-Travel Related Cases in Alberta, Canada. Toxins, 2021, 13, 755.	3.4	6
76	Insights into the assessment of highly pathogenic Shiga toxin-producing Escherichia coli in raw milk and raw milk cheeses by High Throughput Real-time PCR. International Journal of Food Microbiology, 2022, 366, 109564.	4.7	6
77	Animal Botulism Outcomes in the AniBioThreat Project. Biosecurity and Bioterrorism, 2013, 11, S177-S182.	1.2	5
78	Draft Genome Sequences of 17 French Clostridium botulinum Group III Strains. Genome Announcements, 2015, 3, .	0.8	5
79	Investigation of Clostridium botulinum group III's mobilome content. Anaerobe, 2018, 49, 71-77.	2.1	5
80	Evaluation of high molecular weight DNA extraction methods for long-read sequencing of Shiga toxin-producing Escherichia coli. PLoS ONE, 2022, 17, e0270751.	2.5	5
81	Draft Genome Sequences of Five Brazilian Clostridium botulinum Group III Type D/C Strains. Genome Announcements, 2017, 5, .	0.8	4
82	Validation and Application of a Real-Time PCR Assay Based on the CRISPR Array for Serotype-Specific Detection and Quantification of Enterohemorrhagic Escherichia coli O157:H7 in Cattle Feces. Journal of Food Protection, 2018, 81, 1157-1164.	1.7	4
83	Prevalence of Enteropathogens and Virulence Traits in Brazilian Children With and Without Diarrhea. Frontiers in Cellular and Infection Microbiology, 2020, 10, 549919.	3.9	4
84	Emergence of New ST301 Shiga Toxin-Producing Escherichia coli Clones Harboring Extra-Intestinal Virulence Traits in Europe. Toxins, 2021, 13, 686.	3.4	4
85	Development and validation of high-resolution melting assays for the detection of potentially virulent strains of Escherichia coli O103 and O121. Food Control, 2022, 139, 109095.	5.5	4
86	Detection of Shiga Toxin-Producing <i>Escherichia coli</i> from Nonhuman Sources and Strain Typing., 0,, 261-295.		3
87	Development of a High Resolution Virulence Allelic Profiling (HReVAP) Approach Based on the Accessory Genome of Escherichia coli to Characterize Shiga-Toxin Producing E. coli (STEC). Frontiers in Microbiology, 2016, 7, 202.	3.5	2
88	Variations of the Escherichia coli population in the digestive tract of broilers. Avian Pathology, 2020, 49, 678-688.	2.0	1