Kaushik Banerjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10501269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenolic composition and antioxidant activity in grapevine parts and berries (Vitis vinifera L.) cv. Kishmish Chornyi (Sharad Seedless) during maturation. International Journal of Food Science and Technology, 2006, 41, 1-9.	2.7	390
2	Validation and uncertainty analysis of a multi-residue method for pesticides in grapes using ethyl acetate extraction and liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2007, 1173, 98-109.	3.7	191
3	Phenolic compounds, antioxidant activity and insulinotropic effect of extracts prepared from grape (Vitis vinifera L) byproducts. Journal of Food Science and Technology, 2015, 52, 181-190.	2.8	102
4	Multiresidue Pesticide Analysis in Fresh Produce by Capillary Gas Chromatographyâ^'Mass Spectrometry/Selective Ion Monitoring (GC-MS/SIM) and â^ Tandem Mass Spectrometry (GC-MS/MS) ^{â€} . Journal of Agricultural and Food Chemistry, 2010, 58, 5868-5883.	5.2	91
5	Multiresidue Pesticide Analysis of Agricultural Commodities Using Acetonitrile Salt-Out Extraction, Dispersive Solid-Phase Sample Clean-Up, and High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2011, 59, 7636-7646.	5.2	91
6	A unified approach for high-throughput quantitative analysis of the residues of multi-class veterinary drugs and pesticides in bovine milk using LC-MS/MS and GC–MS/MS. Food Chemistry, 2019, 272, 292-305.	8.2	88
7	Multiresidue Pesticide Analysis of Ginseng Powders Using Acetonitrile- or Acetone-Based Extraction, Solid-Phase Extraction Cleanup, and Gas Chromatographyâ [^] Mass Spectrometry/Selective Ion Monitoring (GC-MS/SIM) or â [^] Tandem Mass Spectrometry (GC-MS/MS) ^{â€} . Journal of Agricultural and Food Chemistry, 2010, 58, 5884-5896.	5.2	85
8	Multiresidue analysis of multiclass pesticides and polyaromatic hydrocarbons in fatty fish by gas chromatography tandem mass spectrometry and evaluation of matrix effect. Food Chemistry, 2016, 196, 1-8.	8.2	78
9	Optimization of separation and detection conditions for the multiresidue analysis of pesticides in grapes by comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. Journal of Chromatography A, 2008, 1190, 350-357.	3.7	72
10	Development and Interlaboratory Validation of a QuEChERS-Based Liquid Chromatographyâ^'Tandem Mass Spectrometry Method for Multiresidue Pesticide Analysis ^{â€} . Journal of Agricultural and Food Chemistry, 2010, 58, 5897-5903.	5.2	68
11	Multiresidue determination of 375 organic contaminants including pesticides, polychlorinated biphenyls and polyaromatic hydrocarbons in fruits and vegetables by gas chromatography–triple quadrupole mass spectrometry with introduction of semi-quantification approach. Journal of Chromatography A, 2012, 1270, 283-295.	3.7	68
12	Residue analysis of fipronil and difenoconazole in okra by liquid chromatography tandem mass spectrometry and their food safety evaluation. Food Chemistry, 2015, 176, 145-151.	8.2	63
13	Validation of a GC–MS method for the estimation of dithiocarbamate fungicide residues and safety evaluation of mancozeb in fruits and vegetables. Food Chemistry, 2014, 150, 175-181.	8.2	62
14	Optimization of two-dimensional gas chromatography time-of-flight mass spectrometry for separation and estimation of the residues of 160 pesticides and 25 persistent organic pollutants in grape and wine. Journal of Chromatography A, 2010, 1217, 3881-3889.	3.7	60
15	Multiresidue analysis of 83 pesticides and 12 dioxin-like polychlorinated biphenyls in wine by gas chromatography–time-of-flight mass spectrometry. Journal of Chromatography A, 2009, 1216, 2307-2319.	3.7	58
16	Residue dissipation and processing factor for dimethomorph, famoxadone and cymoxanil during raisin preparation. Food Chemistry, 2015, 170, 180-185.	8.2	58
17	Multiresidue Analysis of 50 Pesticides in Grape, Pomegranate, and Mango by Gas Chromatographyâ^'lon Trap Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2010, 58, 1447-1454.	5.2	54
18	Dissipation and Distribution Behavior of Azoxystrobin, Carbendazim, and Difenoconazole in Pomegranate Fruits. Journal of Agricultural and Food Chemistry, 2011, 59, 7866-7873.	5.2	53

#	Article	IF	CITATIONS
19	Optimization of multi-residue method for targeted screening and quantitation of 243 pesticide residues in cardamom (Elettaria cardamomum) by gas chromatography tandem mass spectrometry (GC-MS/MS) analysis. Chemosphere, 2018, 193, 447-453.	8.2	50
20	Multiresidue Determination and Uncertainty Analysis of 87 Pesticides in Mango by Liquid Chromatographyâ ^Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2009, 57, 4068-4078.	5.2	49
21	Degradation kinetics and safety evaluation of tetraconazole and difenoconazole residues in grape. Pest Management Science, 2008, 64, 283-289.	3.4	48
22	Quantitative Screening of Agrochemical Residues in Fruits and Vegetables by Buffered Ethyl Acetate Extraction and LC-MS/MS Analysis. Journal of Agricultural and Food Chemistry, 2015, 63, 4449-4456.	5.2	47
23	Biodegradation of Profenofos by Bacillus subtilis Isolated from Grapevines (Vitis vinifera). Journal of Agricultural and Food Chemistry, 2013, 61, 7195-7202.	5.2	46
24	Food safety evaluation of buprofezin, dimethoate and imidacloprid residues in pomegranate. Food Chemistry, 2012, 131, 787-795.	8.2	44
25	Extraction of pesticides, dioxin-like PCBs and PAHs in water based commodities using liquid–liquid microextraction and analysis by gas chromatography–mass spectrometry. Journal of Chromatography A, 2011, 1218, 6780-6791.	3.7	40
26	Optimization of gas chromatography–single quadrupole mass spectrometry conditions for multiresidue analysis of pesticides in grapes in compliance to EU-MRLs. Food Chemistry, 2013, 138, 600-607.	8.2	37
27	Analysis of pesticide residues in tuber crops using pressurised liquid extraction and gas chromatography-tandem mass spectrometry. Food Chemistry, 2018, 241, 250-257.	8.2	32
28	Multiresidue Pesticide Analysis in Ginseng and Spinach by Nontargeted and Targeted Screening Procedures. Journal of AOAC INTERNATIONAL, 2011, 94, 1741-1751.	1.5	31
29	Kinetics of degradation of carbendazim by B. subtilis strains: possibility of in situ detoxification. Environmental Monitoring and Assessment, 2014, 186, 8599-8610.	2.7	30
30	Dissipation kinetics of forchlorfenuron, 6-benzyl aminopurine, gibberellic acid and ethephon residues in table grapes (Vitis vinifera). Food Chemistry, 2013, 141, 4208-4214.	8.2	29
31	Simultaneous analysis of herbicides pendimethalin, oxyfluorfen, imazethapyr and quizalofop-p-ethyl by LC–MS/MS and safety evaluation of their harvest time residues in peanut (Arachis hypogaea L.). Journal of Food Science and Technology, 2015, 52, 4001-4014.	2.8	27
32	Image processing based technique for classification of fish quality after cypermethrine exposure. LWT - Food Science and Technology, 2016, 68, 408-417.	5.2	27
33	Single-Laboratory Validation and Uncertainty Analysis of 82 Pesticides Determined in Pomegranate, Apple, and Orange by Ethyl Acetate Extraction and Liquid Chromatography/Tandem Mass Spectrometry. Journal of AOAC INTERNATIONAL, 2008, 91, 1435-1445.	1.5	25
34	Degradation kinetics and safety evaluation of buprofezin residues in grape (Vitis viniferaL.) and three different soils of India. Pest Management Science, 2009, 65, 183-188.	3.4	25
35	Enhanced Dissipation of Triazole and Multiclass Pesticide Residues on Grapes after Foliar Application of Grapevine-Associated <i>Bacillus</i> Species. Journal of Agricultural and Food Chemistry, 2015, 63, 10736-10746.	5.2	24
36	Optimization and Validation of a Residue Analysis Method for Glyphosate, Glufosinate, and Their Metabolites in Plant Matrixes by Liquid Chromatography with Tandem Mass Spectrometry. Journal of AOAC INTERNATIONAL, 2017, 100, 631-639.	1.5	23

#	Article	IF	CITATIONS
37	Comprehensive multiresidue determination of pesticides and plant growth regulators in grapevine leaves using liquid- and gas chromatography with tandem mass spectrometry. Journal of Chromatography A, 2018, 1579, 73-82.	3.7	23
38	Dissipation kinetics, safety evaluation, and assessment of pre-harvest interval (PHI) and processing factor for kresoxim methyl residues in grape. Environmental Monitoring and Assessment, 2014, 186, 2369-2374.	2.7	22
39	Dissipation pattern, safety evaluation, and generation of processing factor (PF) for pyraclostrobin and metiram residues in grapes during raisin preparation. Environmental Monitoring and Assessment, 2015, 187, 31.	2.7	21
40	Multiresidue Method for Targeted Screening of Pesticide Residues in Spice Cardamom (Elettaria) Tj ETQq0 0 0 rgB INTERNATIONAL, 2017, 100, 603-609.	T /Overloo 1.5	ck 10 Tf 50 20
41	Rate of degradation ofλ-cyhalothrin and methomyl in grapes (Vitis viniferaL.). Food Additives and Contaminants, 2006, 23, 994-999.	2.0	19
42	Development and validation of a multiresidue method for pesticides and selected veterinary drugs in animal feed using liquid- and gas chromatography with tandem mass spectrometry. Journal of Chromatography A, 2020, 1627, 461416.	3.7	19
43	Optimization of Detection Conditions and Single-Laboratory Validation of a Multiresidue Method for the Determination of 135 Pesticides and 25 Organic Pollutants in Grapes and Wine by Gas Chromatography Time-of-Flight Mass Spectrometry. Journal of AOAC INTERNATIONAL, 2011, 94, 273-285.	1.5	17
44	Improved analysis of captan, tetrahydrophthalimide, captafol, folpet, phthalimide, and iprodione in fruits and vegetables by liquid chromatography tandem mass spectrometry. Food Chemistry, 2019, 301, 125216.	8.2	17
45	Targeted screening and safety evaluation of 276 agrochemical residues in raisins using buffered ethyl acetate extraction and liquid chromatography–tandem mass spectrometry analysis. Chemosphere, 2017, 184, 1036-1042.	8.2	16
46	Development and validation of a simple analytical method for the determination of 2,4,6-trichloroanisole in wine by GC–MS. Food Chemistry, 2011, 124, 1734-1740.	8.2	15
47	Development and validation of an analytical method for the multiresidue analysis of pesticides in sesame seeds using liquid- and gas chromatography with tandem mass spectrometry. Journal of Chromatography A, 2021, 1652, 462346.	3.7	15
48	Ensuring selectivity and sensitivity by timed- and ultra-selective reaction monitoring during gas chromatography–tandem mass spectrometric determination of pesticides. Journal of Chromatography A, 2013, 1318, 226-233.	3.7	13
49	High throughput residue analysis of paraquat and diquat involving hydrophilic interaction liquid chromatographic separation and mass spectrometric determination. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2019, 36, 120-130.	2.3	12
50	Multiresidue Analysis of Synthetic Pyrethroid Pesticides in Grapes by Gas Chromatography with Programmed Temperature VaporizingLarge Volume Injection Coupled with Ion Trap Mass Spectrometry. Journal of AOAC INTERNATIONAL, 2010, 93, 368-379.	1.5	9
51	Analytical method validation, dissipation and safety evaluation of combination fungicides fenamidone + mancozeb and iprovalicarb + propineb in/on tomato. Journal of Food Science and Technology, 2020, 57, 2061-2069.	2.8	9
52	Introducing a low-cost jute activated carbon as a novel cleanup agent in multiclass pesticide residue analysis using gas chromatography tandem mass spectrometry. Journal of Cleaner Production, 2021, 319, 128696.	9.3	9
53	Determination of Triazines and Triazoles in Grapes Using Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization High-Resolution Mass Spectrometry. Journal of AOAC INTERNATIONAL, 2017, 100, 640-646.	1.5	8
54	Residue dynamics of carbendazim and mancozeb in grape (<i>Vitis Vinifera L</i>) berries. Toxicological and Environmental Chemistry, 2005, 87, 77-81.	1.2	6

Kaushik Banerjee

#	Article	IF	CITATIONS
55	Multi-residue Analysis of Pesticides in Turmeric (Powder and Rhizome) Using Gas Chromatography Tandem Mass Spectrometry. Journal of AOAC INTERNATIONAL, 2020, 103, 1498-1511.	1.5	6
56	Multi-residue analysis of captan, captafol, folpet, and iprodione in cereals using liquid chromatography with tandem mass spectrometry. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2019, 36, 1688-1695.	2.3	4
57	Multiresidue analysis of pesticides, polyaromatic hydrocarbons and polychlorinated biphenyls in poultry meat and chicken eggs by GC-MS/MS: method development and validation. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2022, 57, 263-283.	1.5	4
58	Application of GC–TOFMS for Pesticide Residue Analysis in Grapes. Comprehensive Analytical Chemistry, 2012, , 367-413.	1.3	3
59	Producing Crops without Mancozeb? Perspectives on Recent Regulatory Dilemmas and Ways Out. ACS Agricultural Science and Technology, 2022, 2, 272-275.	2.3	3
60	A Fast, Inexpensive, and Safe Method for Residue Analysis of Meptyldinocap in Different Fruits by Liquid Chromatography/Tandem Mass Spectrometry. Journal of AOAC INTERNATIONAL, 2010, 93, 1957-1964.	1.5	2