List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1050118/publications.pdf Version: 2024-02-01

HELOISE CIRR

#	Article	IF	CITATIONS
1	Ecological strategies of (pl)ants: Towards a worldâ€wide worker economic spectrum for ants. Functional Ecology, 2023, 37, 13-25.	1.7	9
2	What's hot and what's not – Identifying publication trends in insect ecology. Austral Ecology, 2022, 47, 5-16.	0.7	9
3	Testing the effects of ecologically extinct mammals on vegetation in arid Australia: A longâ€ŧerm experimental approach. Austral Ecology, 2022, 47, 226-238.	0.7	1
4	Introduction to the Insect Ecology Special Issue. Austral Ecology, 2022, 47, 3-4.	0.7	0
5	Subtle structures with notâ€soâ€subtle functions: A data set of arthropod constructs and their host plants. Ecology, 2022, 103, e3639.	1.5	2
6	Climate variability and aridity modulate the role of leaf shelters for arthropods: A global experiment. Global Change Biology, 2022, 28, 3694-3710.	4.2	12
7	Experimental evidence for ecological cascades following threatened mammal reintroduction. Ecology, 2021, 102, e03191.	1.5	8
8	Rewilding with invertebrates and microbes to restore ecosystems: Present trends and future directions. Ecology and Evolution, 2021, 11, 7187-7200.	0.8	27
9	A global database for metacommunity ecology, integrating species, traits, environment and space. Scientific Data, 2020, 7, 6.	2.4	28
10	Open Science principles for accelerating trait-based science across the Tree of Life. Nature Ecology and Evolution, 2020, 4, 294-303.	3.4	144
11	Rainfallâ€dependent impacts of threatened ecosystem engineers on organic matter cycling. Functional Ecology, 2019, 33, 2254-2266.	1.7	8
12	Longâ€ŧerm responses of desert ant assemblages to climate. Journal of Animal Ecology, 2019, 88, 1549-1563.	1.3	26
13	Digging mammal reintroductions reduce termite biomass and alter assemblage composition along an aridity gradient. Oecologia, 2019, 191, 645-656.	0.9	5
14	Beetle ecological indicators – A comparison of cost vs reward to understand functional changes in response to restoration actions. Ecological Indicators, 2019, 104, 209-218.	2.6	9
15	Thermoregulatory traits combine with range shifts to alter the future of montane ant assemblages. Global Change Biology, 2019, 25, 2162-2173.	4.2	16
16	Restoration potential of threatened ecosystem engineers increases with aridity: broad scale effects on soil nutrients and function. Ecography, 2019, 42, 1370-1382.	2.1	16
17	An experimental test of the multi-scalar impacts of digging mammal reintroductions on invertebrate burrows. Soil Biology and Biochemistry, 2019, 132, 101-110.	4.2	4
18	Effects of fire severity on the composition and functional traits of litter-dwelling macroinvertebrates in a temperate forest. Forest Ecology and Management, 2019, 434, 279-288.	1.4	21

#	Article	IF	CITATIONS
19	A global database and "state of the field―review of research into ecosystem engineering by land animals. Journal of Animal Ecology, 2018, 87, 974-994.	1.3	73
20	Soil surface complexity has a larger effect on food exploitation by ants than a change from grassland to shrubland. Ecological Entomology, 2018, 43, 379-388.	1.1	20
21	Testing topâ€down and bottomâ€up effects on arid zone beetle assemblages following mammal reintroduction. Austral Ecology, 2018, 43, 288-300.	0.7	8
22	Habitat disturbance selects against both small and large species across varying climates. Ecography, 2018, 41, 1184-1193.	2.1	51
23	Dominance–diversity relationships in ant communities differ with invasion. Global Change Biology, 2018, 24, 4614-4625.	4.2	39
24	Forest management strategy affects saproxylic beetle assemblages: A comparison of even and uneven-aged silviculture using direct and indirect sampling. PLoS ONE, 2018, 13, e0194905.	1.1	11
25	Over what timeframes do desert ants respond to variation in climate and resources?. Australian Zoologist, 2018, 39, 646-657.	0.6	5
26	Soil humidity, potential solar radiation and altitude affect boreal beetle assemblages in dead wood. Biological Conservation, 2017, 209, 107-118.	1.9	20
27	Uneven-aged silviculture can reduce negative effects of forest management on beetles. Forest Ecology and Management, 2017, 391, 436-445.	1.4	26
28	A global database of ant species abundances. Ecology, 2017, 98, 883-884.	1.5	37
29	<i>GlobalAnts</i> : a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conservation and Diversity, 2017, 10, 5-20.	1.4	119
30	Biodiversity benefits for saproxylic beetles with uneven-aged silviculture. Forest Ecology and Management, 2017, 402, 37-50.	1.4	17
31	Does wing morphology affect recolonization of restored farmland by groundâ€dwelling beetles?. Restoration Ecology, 2017, 25, 234-242.	1.4	8
32	Postâ€fire recovery of litter detritivores is limited by distance from burn edge. Austral Ecology, 2017, 42, 94-102.	0.7	13
33	The Effect of Temperature Increases on an Ant-Hemiptera-Plant Interaction. PLoS ONE, 2016, 11, e0155131.	1.1	17
34	Interspecific competition and coexistence between wood ants. , 2016, , 123-144.		3
35	Ant assemblages have darker and larger members in cold environments. Global Ecology and Biogeography, 2016, 25, 1489-1499.	2.7	95
36	Net effects of soil disturbance and herbivory on vegetation by a re-established digging mammal assemblage in arid zone Australia. Journal of Arid Environments, 2016, 133, 29-36.	1.2	17

#	Article	IF	CITATIONS
37	Termite activity and decomposition are influenced by digging mammal reintroductions along an aridity gradient. Journal of Arid Environments, 2016, 133, 85-93.	1.2	23
38	Foraging loads of red wood ants: <i>Formica aquilonia</i> (Hymenoptera: Formicidae) in relation to tree characteristics and stand age. PeerJ, 2016, 4, e2049.	0.9	12
39	Effects of reconstruction of a pre-European vertebrate assemblage on ground-dwelling arachnids in arid Australia. Oecologia, 2015, 178, 497-509.	0.9	24
40	Invasive Cane Toads' Predatory Impact on Dung Beetles is Mediated by Reservoir Type at Artificial Water Points. Ecosystems, 2015, 18, 826-838.	1.6	9
41	Climate mediates the effects of disturbance on ant assemblage structure. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150418.	1.2	58
42	Numbat nirvana: conservation ecology of the endangered numbat (Myrmecobius fasciatus) (Marsupialia : Myrmecobiidae) reintroduced to Scotia and Yookamurra Sanctuaries, Australia. Australian Journal of Zoology, 2015, 63, 258.	0.6	26
43	Responses of foliageâ€iving spider assemblage composition and traits to a climatic gradient in <scp><i>T</i></scp> <i>hemeda</i> grasslands. Austral Ecology, 2015, 40, 225-237.	0.7	13
44	Does morphology predict trophic position and habitat use of ant species and assemblages?. Oecologia, 2015, 177, 519-531.	0.9	70
45	The Effects of Fire Severity on Macroinvertebrate Detritivores and Leaf Litter Decomposition. PLoS ONE, 2015, 10, e0124556.	1.1	21
46	Morphological traits: predictable responses to macrohabitats across a 300 km scale. PeerJ, 2014, 2, e271.	0.9	52
47	The fourthâ€corner solution – using predictive models to understand how species traits interact with the environment. Methods in Ecology and Evolution, 2014, 5, 344-352.	2.2	226
48	Fast forward selection for generalized estimating equations with a large number of predictor variables. Biometrics, 2014, 70, 110-120.	0.8	16
49	REVIEW: Refuges for fauna in fireâ€prone landscapes: their ecological function and importance. Journal of Applied Ecology, 2013, 50, 1321-1329.	1.9	149
50	The spatial scaling of beta diversity. Global Ecology and Biogeography, 2013, 22, 639-647.	2.7	181
51	Restoration of trophic structure in an assemblage of omnivores, considering a revegetation chronosequence. Journal of Applied Ecology, 2013, 50, 449-458.	1.9	39
52	Does Structural Complexity Determine the Morphology of Assemblages? An Experimental Test on Three Continents. PLoS ONE, 2013, 8, e64005.	1.1	60
53	Functional Roles Affect Diversity-Succession Relationships for Boreal Beetles. PLoS ONE, 2013, 8, e72764.	1.1	19
54	Micro and Macro-Habitat Associations in Saproxylic Beetles: Implications for Biodiversity Management. PLoS ONE, 2012, 7, e41100.	1.1	57

#	Article	IF	CITATIONS
55	The discovery–dominance tradeâ€off is the exception, rather than the rule. Journal of Animal Ecology, 2012, 81, 233-241.	1.3	66
56	Effects of planting method on the recovery of arboreal ant activity on revegetated farmland. Austral Ecology, 2012, 37, 789-799.	0.7	4
57	Arthropod colonisation of natural and experimental logs in an agricultural landscape: Effects of habitat, isolation, season and exposure time. Ecological Management and Restoration, 2012, 13, 166-174.	0.7	5
58	Forestry Alters Foraging Efficiency and Crop Contents of Aphid-Tending Red Wood Ants, Formica aquilonia. PLoS ONE, 2012, 7, e32817.	1.1	17
59	Experimental evidence for mediation of competition by habitat succession. Ecology, 2011, 92, 1871-1878.	1.5	36
60	Habitat contrasts reveal a shift in the trophic position of ant assemblages. Journal of Animal Ecology, 2011, 80, 119-127.	1.3	60
61	Field tests of interspecific competition in ant assemblages: revisiting the dominant red wood ants. Journal of Animal Ecology, 2011, 80, 548-557.	1.3	20
62	Experimental reduction of native vertebrate grazing and addition of logs benefit beetle diversity at multiple scales. Journal of Applied Ecology, 2011, 48, 943-951.	1.9	66
63	Morphological traits as predictors of diet and microhabitat use in a diverse beetle assemblage. Biological Journal of the Linnean Society, 2011, 102, 301-310.	0.7	63
64	Structure of ant assemblages in Western Ghats, India: role of habitat, disturbance and introduced species. Insect Conservation and Diversity, 2011, 4, 132-141.	1.4	18
65	Habitat characteristics may override climatic influences on ant assemblage composition: a study using a 300-km climatic gradient. Australian Journal of Zoology, 2011, 59, 332.	0.6	12
66	How does habitat complexity affect ant foraging success? A test using functional measures on three continents. Oecologia, 2010, 164, 1061-1073.	0.9	111
67	How will low-intensity burning after clear-felling affect mid-boreal insect assemblages?. Basic and Applied Ecology, 2010, 11, 363-372.	1.2	19
68	Fineâ€scale heterogeneity in beetle assemblages under coâ€occurring <i>Eucalyptus</i> in the same subgenus. Journal of Biogeography, 2010, 37, 1927-1937.	1.4	10
69	Saproxylic parasitoid (Hymenoptera, Ichneumonoidea) communities in managed boreal forest landscapes. Insect Conservation and Diversity, 2010, 3, 114-123.	1.4	19
70	Canopy and litter ant assemblages share similar climate–species density relationships. Biology Letters, 2010, 6, 769-772.	1.0	23
71	Revegetation of farmland restores function and composition of epigaeic beetle assemblages. Biological Conservation, 2010, 143, 677-687.	1.9	39
72	Forest Succession and Harvesting of Hemipteran Honeydew by Boreal Ants. Annales Zoologici Fennici, 2010, 47, 99-110.	0.2	31

#	Article	IF	CITATIONS
73	Surface Covering of Downed Logs: Drivers of a Neglected Process in Dead Wood Ecology. PLoS ONE, 2010, 5, e13237.	1.1	27
74	Does the availability of arboreal honeydew determine the prevalence of ecologically dominant ants in restored habitats?. Insectes Sociaux, 2009, 56, 405-412.	0.7	24
75	Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters, 2009, 12, 324-333.	3.0	233
76	Conserving ground-dwelling beetles in an endangered woodland community: Multi-scale habitat effects on assemblage diversity. Biological Conservation, 2009, 142, 1701-1709.	1.9	60
77	Competition and the Role of Dominant Ants. , 2009, , 77-96.		35
78	Responses of parasitoids to saproxylic hosts and habitat: a multi-scale study using experimental logs. Oecologia, 2008, 155, 63-74.	0.9	18
79	Variable response of different functional groups of saproxylic beetles to substrate manipulation and forest management: Implications for conservation strategies. Forest Ecology and Management, 2007, 242, 496-510.	1.4	63
80	The effects of substrate manipulations and forest management on predators of saproxylic beetles. Forest Ecology and Management, 2007, 242, 518-529.	1.4	35
81	The importance of substrate type, shading and scorching for the attractiveness of dead wood to saproxylic beetles. Basic and Applied Ecology, 2007, 8, 364-376.	1.2	56
82	Effects of low severity burning after clear-cutting on mid-boreal ant communities in the two years after fire. Journal of Insect Conservation, 2007, 11, 169-175.	0.8	11
83	Insect natural enemies of Ips typographus (L.) (Coleoptera, Scolytinae) in managed and unmanaged stands of mixed lowland forest in Poland. Journal of Pest Science, 2007, 80, 99-107.	1.9	22
84	Conservation-oriented manipulations of coarse woody debris affect its value as habitat for spruce-infesting bark and ambrosia beetles (Coleoptera: Scolytinae) in northern Sweden. Canadian Journal of Forest Research, 2006, 36, 174-185.	0.8	40
85	Effects of landscape composition and substrate availability on saproxylic beetles in boreal forests: a study using experimental logs for monitoring assemblages. Ecography, 2006, 29, 191-204.	2.1	91
86	Conservation-oriented forestry and early successional saproxylic beetles: Responses of functional groups to manipulated dead wood substrates. Biological Conservation, 2006, 129, 437-450.	1.9	102
87	Wing loading and habitat selection in forest beetles: Are red-listed species poorer dispersers or more habitat-specific than common congenerics?. Biological Conservation, 2006, 132, 250-260.	1.9	37
88	The effect of a dominant ant, Iridomyrmex purpureus, on resource use by ant assemblages depends on microhabitat and resource type. Austral Ecology, 2005, 30, 856-867.	0.7	47
89	Effects of management on coarse woody debris volume and composition in boreal forests in northern Sweden. Scandinavian Journal of Forest Research, 2005, 20, 213-222.	0.5	78
90	Parasitoids (Hymenoptera, Ichneumonoidea) of Saproxylic beetles are affected by forest successional stage and dead wood characteristics in boreal spruce forest. Biological Conservation, 2005, 126, 456-464.	1.9	76

#	Article	IF	CITATIONS
91	REMOVAL EXPERIMENT REVEALS LIMITED EFFECTS OF A BEHAVIORALLY DOMINANT SPECIES ON ANT ASSEMBLAGES. Ecology, 2004, 85, 648-657.	1.5	75
92	Nest relocation in the golden spiny ant, Polyrhachis ammon: environmental cues and temporal castes. Insectes Sociaux, 2003, 50, 323-329.	0.7	21
93	Dominant meat ants affect only their specialist predator in an epigaeic arthropod community. Oecologia, 2003, 136, 609-615.	0.9	23
94	Colonisation by a dominant ant facilitated by anthropogenic disturbance: effects on ant assemblage composition, biomass and resource use. Oikos, 2003, 103, 469-478.	1.2	55
95	Habitat fragmentation in an urban environment: large and small fragments support different arthropod assemblages. Biological Conservation, 2002, 106, 91-100.	1.9	298