Jay B Jeffries

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10500312/publications.pdf Version: 2024-02-01

INV R IFFEDIES

#	Article	IF	CITATIONS
1	A Compact Fiber-Coupled NIR/MIR Laser Absorption Instrument for the Simultaneous Measurement of Gas-Phase Temperature and CO, CO2, and H2O Concentration. Sensors, 2022, 22, 1286.	2.1	1
2	Laser-based CO concentration and temperature measurements in high-pressure shock-tube studies of n-heptane partial oxidation. Applied Physics B: Lasers and Optics, 2020, 126, 1.	1.1	16
3	Single-ended mid-infrared laser-absorption sensor for time-resolved measurements of water concentration and temperature within the annulus of a rotating detonation engine. Proceedings of the Combustion Institute, 2019, 37, 1435-1443.	2.4	44
4	A single-ended, mid-IR sensor for time-resolved temperature and species measurements in a hydrogen/ethylene-fueled rotating detonation engine. , 2019, , .		5
5	Infrared laser-absorption sensing for combustion gases. Progress in Energy and Combustion Science, 2017, 60, 132-176.	15.8	471
6	Design and implementation of a laser-based absorption spectroscopy sensor for <i>in situ</i> monitoring of biomass gasification. Measurement Science and Technology, 2017, 28, 125501.	1.4	4
7	Characterization of a Large-Scale Arcjet Facility Using Tunable Diode Laser Absorption Spectroscopy. AIAA Journal, 2017, 55, 3757-3766.	1.5	17
8	Time-resolved sub-ppm CH3 detection in a shock tube using cavity-enhanced absorption spectroscopy with a ps-pulsed UV laser. Proceedings of the Combustion Institute, 2017, 36, 4549-4556.	2.4	10
9	Mid-infrared laser absorption spectroscopy of NO2 at elevated temperatures. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 187, 364-374.	1.1	19
10	Line intensities and temperature-dependent line broadening coefficients of Q-branch transitions in the v2 band of ammonia near 10.4μm. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 175, 90-99.	1.1	33
11	Cavity-enhanced absorption spectroscopy with a ps-pulsed UV laser for sensitive, high-speed measurements in a shock tube. Optics Express, 2016, 24, 308.	1.7	11
12	Single-ended mid-infrared laser-absorption sensor for simultaneous in situ measurements of H_2O, CO_2, CO, and temperature in combustion flows. Applied Optics, 2016, 55, 9347.	2.1	37
13	Shock-tube measurements of excited oxygen atoms using cavity-enhanced absorption spectroscopy. Applied Optics, 2015, 54, 8766.	2.1	32
14	Infrared laser absorption sensors for multiple performance parameters in a detonation combustor. Proceedings of the Combustion Institute, 2015, 35, 3739-3747.	2.4	43
15	Shock-Tube Measurement of Acetone Dissociation Using Cavity-Enhanced Absorption Spectroscopy of CO. Journal of Physical Chemistry A, 2015, 119, 7257-7262.	1.1	20
16	High-sensitivity interference-free diagnostic for measurement of methane in shock tubes. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 156, 80-87.	1.1	49
17	Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4 and H2O in a high-pressure engineering-scale transport-reactor coal gasifier. Fuel, 2015, 150, 102-111.	3.4	101
18	Hypersonic Scramjet Testing via Diode Laser Absorption in a Reflected Shock Tunnel. Journal of Propulsion and Power, 2014, 30, 1586-1594.	1.3	14

#	Article	IF	CITATIONS
19	Spatially Resolved Water Measurements in a Scramjet Combustor Using Diode Laser Absorption. Journal of Propulsion and Power, 2014, 30, 1551-1558.	1.3	29
20	High-bandwidth scanned-wavelength-modulation spectroscopy sensors for temperature and H ₂ 0 in a rotating detonation engine. Measurement Science and Technology, 2014, 25, 105104.	1.4	66
21	Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes. Applied Optics, 2014, 53, 356.	0.9	189
22	Diode Laser Absorption Sensor for Combustion Progress in a Model Scramjet. Journal of Propulsion and Power, 2014, 30, 550-557.	1.3	19
23	Hypersonic scramjet testing via TDLAS measurements of temperature and column density in a reflected shock tunnel. , 2014, , .		0
24	Spatially-resolved TDLAS measurements of temperature, H2O column density, and velocity in a direct-connect scramjet combustor. , 2014, , .		6
25	Sensitive and rapid laser diagnostic for shock tube kinetics studies using cavity-enhanced absorption spectroscopy. Optics Express, 2014, 22, 9291.	1.7	40
26	Time-resolved in situ detection of CO in a shock tube using cavity-enhanced absorption spectroscopy with a quantum-cascade laser near 46µm. Optics Express, 2014, 22, 24559.	1.7	32
27	Multispecies Midinfrared Absorption Measurements in a Hydrocarbon-Fueled Scramjet Combustor. Journal of Propulsion and Power, 2014, 30, 1595-1604.	1.3	35
28	Multi-species laser absorption sensors for in situ monitoring of syngas composition. Applied Physics B: Lasers and Optics, 2014, 115, 9-24.	1.1	50
29	TDLAS-based sensors for in situ measurement of syngas composition in a pressurized, oxygen-blown, entrained flow coal gasifier. Applied Physics B: Lasers and Optics, 2014, 116, 33-42.	1.1	59
30	Application of wavelength-scanned wavelength-modulation spectroscopy H2O absorption measurements in an engineering-scale high-pressure coal gasifier. Applied Physics B: Lasers and Optics, 2014, 117, 411-421.	1.1	19
31	Laser-absorption sensing of gas composition of products from coal gasification. Proceedings of SPIE, 2014, , .	0.8	Ο
32	Monitoring temperature in high enthalpy arc-heated plasma flows using tunable diode laser absorption spectroscopy. , 2013, , .		5
33	Diode laser measurements of linestrength and temperature-dependent lineshape parameters of H2O-, CO2-, and N2-perturbed H2O transitions near 2474 and 2482nm. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130, 100-111.	1.1	61
34	TDL absorption sensors for gas temperature and concentrations in a high-pressure entrained-flow coal gasifier. Proceedings of the Combustion Institute, 2013, 34, 3593-3601.	2.4	77
35	Development of laser absorption techniques for real-time, in-situ dual-species monitoring (NO/NH3,) Tj ETQq1	1 0.784314 2.4	4 rg <mark>8</mark> T /Overic
36	Real-time, in situ, continuous monitoring of CO in a pulverized-coal-fired power plant with a 2.3Âμm laser absorption sensor. Applied Physics B: Lasers and Optics, 2013, 110, 359-365.	1.1	48

#	Article	IF	CITATIONS
37	Two-color absorption spectroscopy strategy for measuring the column density and path average temperature of the absorbing species in nonuniform gases. Applied Optics, 2013, 52, 7950.	0.9	55
38	Supersonic Mass-Flux Measurements via Tunable Diode Laser Absorption and Nonuniform Flow Modeling. AIAA Journal, 2011, 49, 2783-2791.	1.5	56
39	In situ absorption sensor for NO in combustion gases with a 5.2μm quantum-cascade laser. Proceedings of the Combustion Institute, 2011, 33, 725-733.	2.4	43
40	Measurement of Water Vapor Levels for Investigating Vitiation Effects on Scramjet Performance. Journal of Propulsion and Power, 2011, 27, 1315-1317.	1.3	13
41	Mass Flux Sensing via Tunable Diode Laser Absorption of Water Vapor. AIAA Journal, 2010, 48, 2687-2693.	1.5	20
42	Temperature sensing in shock-heated evaporating aerosol using wavelength-modulation absorption spectroscopy of CO ₂ near 2.7 µm. Measurement Science and Technology, 2010, 21, 105603.	1.4	21
43	Mid-infrared absorption measurements of liquid hydrocarbon fuels near. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110, 2135-2147.	1.1	28
44	Two-wavelength mid-IR absorption diagnostic for simultaneous measurement of temperature and hydrocarbon fuel concentration. Proceedings of the Combustion Institute, 2009, 32, 821-829.	2.4	20
45	Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Applied Optics, 2009, 48, 5546.	2.1	446
46	Two-color-absorption sensor for time-resolved measurements of gasoline concentration and temperature. Applied Optics, 2009, 48, 6492.	2.1	9
47	Diode laser measurements of temperature-dependent collisional-narrowing and broadening parameters of Ar-perturbed H2O transitions at 1391.7 and 1397.8nm. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 132-143.	1.1	56
48	Temperature- and composition-dependent mid-infrared absorption spectrum of gas-phase gasoline: Model and measurements. Fuel, 2008, 87, 3600-3609.	3.4	18
49	<i>In situ</i> combustion measurements of H ₂ O and temperature near 2.5 µm using tunable diode laser absorption. Measurement Science and Technology, 2008, 19, 075604.	1.4	87
50	Mid-Infrared Gas Sensing For Combustion Applications. , 2008, , .		0
51	Design of a Fiber-Coupled Mid-Infrared Fuel Sensor for Pulse Detonation Engines. AIAA Journal, 2007, 45, 772-778.	1.5	27
52	Wavelength-Scanned Tunable Diode Laser Temperature Measurements in a Model Gas Turbine Combustor. AIAA Journal, 2007, 45, 420-425.	1.5	25
53	Sensing and Control of Combustion Instabilities in Swirl-Stabilized Combustors Using Diode-Laser Absorption. AIAA Journal, 2007, 45, 390-398.	1.5	36
54	Diode-Laser Sensor for Air-Mass Flux 1: Design and Wind Tunnel Validation. AIAA Journal, 2007, 45, 2204-2212.	1.5	32

#	Article	IF	CITATIONS
55	Measurements of spectral parameters of water-vapour transitions near 1388 and 1345 nm for accurate simulation of high-pressure absorption spectra. Measurement Science and Technology, 2007, 18, 1185-1194.	1.4	48
56	Diode-Laser Sensor for Air-Mass Flux 2: Non-Uniform Flow Modeling and Aeroengine Tests. AIAA Journal, 2007, 45, 2213-2223.	1.5	24
57	Measurement of Non-Uniform Temperature Distributions Using Line-of-Sight Absorption Spectroscopy. AIAA Journal, 2007, 45, 411-419.	1.5	99
58	Experimental study of H2O spectroscopic parameters in the near-IR (6940–7440cmâ~'1) for gas sensing applications at elevated temperature. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 103, 565-577.	1.1	52
59	Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 107, 407-420.	1.1	96
60	Active control of lean blowout in a swirl-stabilized combustor using a tunable diode laser. Proceedings of the Combustion Institute, 2007, 31, 3215-3223.	2.4	50
61	Tunable mid-IR laser absorption sensor for time-resolved hydrocarbon fuel measurements. Proceedings of the Combustion Institute, 2007, 31, 807-815.	2.4	27
62	Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases. Applied Optics, 2006, 45, 1052.	2.1	275
63	Temperature measurement using ultraviolet laser absorption of carbon dioxide behind shock waves. Applied Optics, 2005, 44, 6599.	2.1	24
64	Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor. Applied Optics, 2005, 44, 6701.	2.1	120
65	Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines. Measurement Science and Technology, 2005, 16, 2437-2445.	1.4	39
66	Near-infrared diode laser hydrogen fluoride monitor for dielectric etch. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 2479-2486.	0.9	8
67	Ultraviolet absorption cross-sections of hot carbon dioxide. Chemical Physics Letters, 2004, 399, 490-495.	1.2	18
68	Large-modulation-depth 2f spectroscopy with diode lasers for rapid temperature and species measurements in gases with blended and broadened spectra. Applied Optics, 2004, 43, 6500.	2.1	48
69	Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames III Comparison of A–X excitation schemes. Applied Optics, 2003, 42, 4922.	2.1	68
70	Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser. Measurement Science and Technology, 2003, 14, 1459-1468.	1.4	194
71	Pulse Detonation Engine Characterization and Control Using Tunable Diode-Laser Sensors. Journal of Propulsion and Power, 2003, 19, 568-572.	1.3	40
72	In situmeasurements of HCl during plasma etching of poly-silicon using a diode laser absorption sensor. Measurement Science and Technology, 2003, 14, 1662-1670.	1.4	22

#	Article	IF	CITATIONS
73	Wavelength-agile diode-laser sensing strategies for monitoring gas properties in optically harsh flows: application in cesium-seeded pulse detonation engine. Optics Express, 2002, 10, 505.	1.7	58
74	Sensors for high-pressure, harsh combustion environments using wavelength-agile diode lasers. Proceedings of the Combustion Institute, 2002, 29, 2661-2667.	2.4	14
75	Low pressure flame determinations of rate constants for OH(A) and CH(A) chemiluminescence. Combustion and Flame, 2002, 131, 59-69.	2.8	144
76	Rapid temperature tuning of a $14\cdot \hat{l}$ /4m diode laser with application to high-pressure H_2O absorption spectroscopy. Optics Letters, 2001, 26, 1568.	1.7	36
77	Measurements of NH_3 and CO_2 with distributed-feedback diode lasers near 20 µm in bioreactor vent gases. Applied Optics, 2001, 40, 4395.	2.1	53
78	Diode-laser absorption sensor for line-of-sight gas temperature distributions. Applied Optics, 2001, 40, 4404.	2.1	152
79	CH and Formaldehyde Structures in Partially-Premixed Methane/Air Coflow Flames. Combustion Science and Technology, 2001, 167, 291-310.	1.2	9
80	Flow characterization of a diamond-depositing dc arcjet by laser-induced fluorescence. Applied Optics, 2000, 39, 3704.	2.1	11
81	Absolute CH concentration measurements in low-pressure methane flames: comparisons with model results. Combustion and Flame, 2000, 121, 223-235.	2.8	78
82	A potential remote sensor of CO in vehicle exhausts using 2.3 Âμm diode lasers. Measurement Science and Technology, 2000, 11, 1576-1584.	1.4	55
83	Absolute Concentration Measurements of Chemicallyâ€Important Flame Radicals. Israel Journal of Chemistry, 1999, 39, 41-48.	1.0	5
84	Collisional Quenching of CH(A), OH(A), and NO(A) in Low Pressure Hydrocarbon Flames. Combustion and Flame, 1998, 114, 502-514.	2.8	299
85	HCO concentration in flames via quantitative laser-induced fluorescence. Proceedings of the Combustion Institute, 1998, 27, 453-460.	0.3	8
86	Nitric oxide formation and reburn in low-pressure methane flames. Proceedings of the Combustion Institute, 1998, 27, 1377-1384.	0.3	47
87	Absolute concentration, temperature, and velocity measurements in a diamond depositing dc-arcjet reactor. Diamond and Related Materials, 1998, 7, 165-169.	1.8	12
88	Transition probabilities in OH A 2Σ+â^'X 2Îi: Bands with v′=2 and 3. Journal of Chemical Physics, 1997 6262-6267.	, <u>10</u> 6, 1.2	20
89	Measurement of atomic concentrations in reacting flows through the use of stimulated gain or loss. Applied Optics, 1995, 34, 1127.	2.1	11
90	Laser-induced fluorescence diagnostics of a propane/air flame with a manganese fuel additive.	2.8	16

#	Article	IF	CITATIONS
91	Laser-induced fluorescence temperature measurements in a dc arcjet used for diamond deposition. Applied Optics, 1993, 32, 4629.	2.1	40
92	Collisional energy transfer in predissociative OH laser-induced fluorescence in flames. Optics Letters, 1993, 18, 1355.	1.7	27
93	Laserâ€induced fluorescence detection of polycyclic aromatic hydrocarbons in a dc arcjet used for diamond deposition. Applied Physics Letters, 1993, 63, 3002-3004.	1.5	3
94	Rotational level dependence of predissociation in the v'=3 level of OH A 2Σ+. Journal of Chemical Physics, 1992, 96, 4366-4371.	1.2	64
95	Comparing Laserâ€Induced Fluorescence Measurements and Computer Models of Low Pressure Flame Chemistry. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1992, 96, 1410-1416.	0.9	16
96	Thermal Equilibration During Cavitation. Science, 1992, 256, 248-248.	6.0	22
97	Collisional quenching of highly rotationally excited NH (A 3Îi). Journal of Chemical Physics, 1992, 97, 2400-2405.	1.2	17
98	LIF measurements in methane/air flames of radicals important in prompt-NO formation. Combustion and Flame, 1992, 88, 137-148.	2.8	80
99	Parity propensities in rotational energy transfer of OH X 2Îi with helium. Journal of Chemical Physics, 1991, 94, 7547-7549.	1.2	32
100	Laser-induced fluorescence detection of HCO in a low-pressure flame. Proceedings of the Combustion Institute, 1991, 23, 1847-1854.	0.3	18
101	Collisional quenching of A 2Σ+ NO and A 2Δ CH in low pressure flames. Chemical Physics Letters, 1991, 178, 533-537.	1.2	31
102	Electronic energy transfer from B ' 2Δ to B 2Σ+ in SiCl. Journal of Chemical Physics, 1991, 95,	1628-163	34. 14
103	The OH A2Σ+-X2Îi(4,2) band: Line positions and linewidths. Journal of Molecular Spectroscopy, 1990, 143, 183-185.	0.4	25
104	Rotational level dependence of the electronic quenching of NH2AÌ f by helium. Journal of Chemical Physics, 1990, 93, 237-241.	1.2	7
105	Vibrational energy transfer in OH X 2Îi, v=2 and 1. Journal of Chemical Physics, 1990, 92, 7258-7263.	1.2	65
106	Quenching of A 2Σ+ OH at 300 K by several colliders. Journal of Chemical Physics, 1990, 92, 5218-5222.	1.2	65
107	Quenching and vibrational energy transfer in theB 2Πstate of the NS molecule. Journal of Chemical Physics, 1989, 91, 5343-5351.	1.2	12
108	Detection of Cl in rf plasmas by laserâ€excited stimulated emission. Applied Physics Letters, 1989, 55, 1182-1184.	1.5	19

#	Article	IF	CITATIONS
109	The quantitative lif determination of OH concentrations in low-pressure flames. Proceedings of the Combustion Institute, 1989, 22, 1857-1866.	0.3	10
110	Laser-induced fluorescence determination of temperatures in low pressure flames. Applied Optics, 1989, 28, 3556.	2.1	105
111	Laser-induced fluorescence of O(3p^3P), O_2, and NO near 226 nm: photolytic interferences and simultaneous excitation in flames. Optics Letters, 1989, 14, 767.	1.7	64
112	Intramultiplet energy transfer in the collisions of 3p 4D0 nitrogen atoms with nitrogen molecules. Journal of Chemical Physics, 1989, 91, 2200-2205.	1.2	11
113	Vibrational relaxation of OH (X 2Îi, v=2). Journal of Chemical Physics, 1989, 90, 2174-2181.	1.2	99
114	Laser-induced fluorescence spectroscopy of the B2.PI., A2.DELTA. and C2.SIGMA.+ states of the nitrogen sulfide (NS) radical. The Journal of Physical Chemistry, 1989, 93, 1082-1090.	2.9	14
115	Vibrational and rotational energy transfer in X2Îi OH. AIP Conference Proceedings, 1989, , .	0.3	2
116	Rotational-level-dependent quenching of OH(A2Σ+) at flame temperatures. Chemical Physics Letters, 1988, 152, 160-166.	1.2	65
117	Quantitative Laser-Induced Fluorescence Measurements of Reactive Species: Spectroscopy and Collision Dynamics of SiC <i>l</i> . Materials Research Society Symposia Proceedings, 1988, 117, 41.	0.1	1
118	Collisional quenching and energy transfer in NSB 2Î. Journal of Chemical Physics, 1987, 86, 6839-6846.	1.2	13
119	Vibrationally excited O2 in flames: Measurements on vâ€~=9–11 by laserâ€induced fluorescence. Journal of Chemical Physics, 1987, 86, 2500-2504.	1.2	24
120	Radiative lifetime and quenching of the 3p 4D0 state of atomic nitrogen. Journal of Chemical Physics, 1987, 86, 4876-4884.	1.2	46
121	Transition probabilities in OH A2Σ+-X2Îi: bands with ν' = 0 and 1, ν″ = 0 TO 4. Chemical Physics Letters, 19 138, 425-430.	87, 1.2	32
122	State-specific collision dynamics of OH radicals and N atoms. AIP Conference Proceedings, 1986, , .	0.3	1
123	Laser-induced fluorescence detection of the NS radical in sulfur and nitrogen doped methane flames. Combustion and Flame, 1986, 64, 55-64.	2.8	24
124	Quenching of OH(A 2Σ+, v'=0) by NH3 from 250 to 1400 K. Journal of Chemical Physics, 1986, 85, 1898	3-119203.	27
125	NH A 3Îi quenching at 1400 K. Journal of Chemical Physics, 1986, 84, 4970-4975.	1.2	30
126	Laser pyrolysis/laser fluorescence studies of high-temperature reaction rates: description of the method and results for hydroxyl + methane, propane, and propylene. The Journal of Physical Chemistry, 1985, 89, 1269-1278.	2.9	48

1

#	Article	IF	CITATIONS
127	An In-cylinder Laser Absorption Sensor for Crank-angle-resolved Measurements of Gasoline Concentration and Temperature. SAE International Journal of Engines, 0, 3, 373-382.	0.4	11

128 Crank-angle-resolved Measurements of Air-fuel Ratio, Temperature, and Liquid Fuel Droplet Scattering in a Direct-injection Gasoline Engine. , 0, , .