Ilhan Ceylan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10499804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A detailed investigation of the temperature-controlled fluidized bed solar dryer: A numerical, experimental, and modeling study. Sustainable Energy Technologies and Assessments, 2022, 49, 101703.	2.7	13
2	Exergetic, economic and environmental analysis of temperature controlled solar air heater system. Cleaner Engineering and Technology, 2022, 6, 100369.	4.0	7
3	Assessment of a novel defrost method for PV/T system assisted sustainable refrigeration system. Energy Conversion and Management, 2022, 267, 115943.	9.2	7
4	Experimental analysis of CPV/T solar dryer with nano-enhanced PCM and prediction of drying parameters using ANN and SVM algorithms. Solar Energy, 2021, 218, 57-67.	6.1	69
5	Energy Analysis of Concentrated Photovoltaic/Thermal Panels with Nanofluids. International Journal of Thermodynamics, 2021, 24, 227-236.	1.0	3
6	A detailed analysis of CPV/T solar air heater system with thermal energy storage: A novel winter season application. Journal of Building Engineering, 2021, 42, 103097.	3.4	16
7	Environmental and economic assessment of a low energy consumption household refrigerator. Engineering Science and Technology, an International Journal, 2020, 23, 365-372.	3.2	13
8	Investigation of life cycle CO2 emissions of the polycrystalline and cadmium telluride PV panels. Environmental Nanotechnology, Monitoring and Management, 2020, 14, 100343.	2.9	17
9	Performance assessment of a V-trough photovoltaic system and prediction of power output with different machine learning algorithms. Journal of Cleaner Production, 2020, 268, 122269.	9.3	57
10	A New Hybrid System Design for Thermal Energy Storage. Journal of Thermal Science, 2020, 29, 1300-1308.	1.9	8
11	Performance assessment of a novel design concentrated photovoltaic system coupled with selfâ€cleaning and cooling processes. Environmental Progress and Sustainable Energy, 2020, 39, e13416.	2.3	14
12	Concentrated photovoltaic and thermal system application for fresh water production. Applied Thermal Engineering, 2020, 171, 115054.	6.0	38
13	Performance analysis of using CuO-Methanol nanofluid in a hybrid system with concentrated air collector and vacuum tube heat pipe. Energy Conversion and Management, 2019, 199, 111936.	9.2	64
14	Energy, exergy and environmental impact analysis of concentrated PV/cooling system in Turkey. Solar Energy, 2019, 180, 567-574.	6.1	28
15	Determination of the heat transfer coefficient of PV panels. Energy, 2019, 175, 978-985.	8.8	21
16	Energy, Exergy and Enviroeconomic (3E) analysis of concentrated PV and thermal system in the winter application. Energy Reports, 2019, 5, 262-270.	5.1	23
17	Energy–exergy–ANN analyses of solar-assisted fluidized bed dryer. Drying Technology, 2017, 35, 1711-1720	3.1	27
18	Assessment of a solarâ€assisted infrared timber drying system. Environmental Progress and Sustainable Energy, 2017, 36, 1875-1881.	2.3	6

Ilhan Ceylan

#	Article	IF	CITATIONS
19	Development and Analysis of a Multi-evaporator Cooling System with Electronic Expansion Valves. Arabian Journal for Science and Engineering, 2017, 42, 4513-4521.	3.0	10
20	The mathematical modeling of concentrated photovoltaic module temperature. International Journal of Hydrogen Energy, 2017, 42, 19641-19653.	7.1	28
21	Solar-assisted fluidized bed dryer integrated with a heat pump for mint leaves. Applied Thermal Engineering, 2016, 106, 899-905.	6.0	79
22	Performance analysis of a concentrated photovoltaic and thermal system. Solar Energy, 2016, 129, 217-223.	6.1	55
23	Exergetic analysis of a new design photovoltaic and thermal <scp>(PV/T)</scp> System. Environmental Progress and Sustainable Energy, 2015, 34, 1249-1253.	2.3	16
24	Testing of a Condensation-type Heat Pump System for Low-temperature Drying Applications. International Journal of Food Engineering, 2014, 10, 521-531.	1.5	13
25	The prediction of photovoltaic module temperature with artificial neural networks. Case Studies in Thermal Engineering, 2014, 3, 11-20.	5.7	70
26	Cooling of a photovoltaic module with temperature controlled solar collector. Energy and Buildings, 2014, 72, 96-101.	6.7	87
27	The artificial neural network model to estimate the photovoltaic modul efficiency for all regions of the Turkey. Energy and Buildings, 2014, 84, 258-267.	6.7	22
28	Psychrometric analysis of a timber dryer. Case Studies in Thermal Engineering, 2014, 2, 29-35.	5.7	5
29	Thermodynamic analysis of PID temperature controlled heat pump system. Case Studies in Thermal Engineering, 2014, 2, 42-49.	5.7	18
30	Thermodynamic analysis of a new design of temperature controlled parabolic trough collector. Energy Conversion and Management, 2013, 74, 505-510.	9.2	27
31	Energy Analysis of a New Design of a Photovoltaic Cell-Assisted Solar Dryer. Drying Technology, 2013, 31, 1077-1082.	3.1	25
32	Energy and exergy analyses of a temperature controlled solar water heater. Energy and Buildings, 2012, 47, 630-635.	6.7	33
33	Determination of drying characteristics of apples in a heat pump and solar dryer. Desalination, 2009, 239, 266-275.	8.2	77
34	Energy analysis of hazelnut drying system-assisted heat pump. International Journal of Energy Research, 2008, 32, 971-979.	4.5	9
35	Modeling of a hazelnut dryer assisted heat pump by using artificial neural networks. Applied Energy, 2008, 85, 841-854.	10.1	36
36	Determination of Drying Characteristics of Timber by Using Artificial Neural Networks and Mathematical Models. Drying Technology, 2008, 26, 1469-1476.	3.1	58

ILHAN CEYLAN

#	Article	IF	CITATIONS
37	Energy and exergy analysis of timber dryer assisted heat pump. Applied Thermal Engineering, 2007, 27, 216-222.	6.0	71
38	The history of greenhouse gas emissions and relation with the nuclear energy policy for Turkey. International Journal of Ambient Energy, 0, , 1-9.	2.5	40
39	Solarmeter Design for High Solar Radiation Measurement and Experimental Validation. El-Cezeri Journal of Science and Engineering, 0, , .	0.1	2