Maureen B Quin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1049913/publications.pdf

Version: 2024-02-01

304602 276775 41 2,238 22 h-index citations papers

g-index 52 52 52 2667 docs citations times ranked citing authors all docs

41

#	Article	IF	CITATIONS
1	Organizing Multi-Enzyme Systems into Programmable Materials for Biocatalysis. Catalysts, 2021, 11, 409.	1.6	20
2	Molecular Identification and Antimicrobial Activity of Foliar Endophytic Fungi on the Brazilian Pepper Tree (Schinus terebinthifolius) Reveal New Species of Diaporthe. Current Microbiology, 2021, 78, 3218-3229.	1.0	13
3	Ethanolamine bacterial microcompartments: from structure, function studies to bioengineering applications. Current Opinion in Microbiology, 2021, 62, 28-37.	2.3	7
4	Solid-Phase Assembly of Multienzyme Systems into Artificial Cellulosomes. Bioconjugate Chemistry, 2021, 32, 1966-1972.	1.8	12
5	Engineering Bacillus subtilis for the formation of a durable living biocomposite material. Nature Communications, 2021, 12, 7133.	5.8	16
6	A trimodular bacterial enzyme combining hydrolytic activity with oxidative glycosidic bond cleavage efficiently degrades chitin. Journal of Biological Chemistry, 2020, 295, 9134-9146.	1.6	26
7	Discovery of Antifungal and Biofilm Preventative Compounds from Mycelial Cultures of a Unique North American Hericium sp. Fungus. Molecules, 2020, 25, 963.	1.7	24
8	Developing a Protein Scaffolding System for Rapid Enzyme Immobilization and Optimization of Enzyme Functions for Biocatalysis. ACS Synthetic Biology, 2019, 8, 1867-1876.	1.9	55
9	Expression of the Fusarium graminearum terpenome and involvement of the endoplasmic reticulum-derived toxisome. Fungal Genetics and Biology, 2019, 124, 78-87.	0.9	25
10	Ascomycete Aspergillus oryzae Is an Efficient Expression Host for Production of Basidiomycete Terpenes by Using Genomic DNA Sequences. Applied and Environmental Microbiology, 2019, 85, .	1.4	43
11	Protein-based scaffolds for enzyme immobilization. Methods in Enzymology, 2019, 617, 323-362.	0.4	11
12	Development of a synthetic cumate-inducible gene expression system for Bacillus. Applied Microbiology and Biotechnology, 2019, 103, 303-313.	1.7	30
13	Sesquiterpene Synthase–3-Hydroxy-3-Methylglutaryl Coenzyme A Synthase Fusion Protein Responsible for Hirsutene Biosynthesis in Stereum hirsutum. Applied and Environmental Microbiology, 2018, 84, .	1.4	25
14	Building a toolbox of protein scaffolds for future immobilization of biocatalysts. Applied Microbiology and Biotechnology, 2018, 102, 8373-8388.	1.7	33
15	Self-Assembling Protein Scaffold System for Easy in Vitro Coimmobilization of Biocatalytic Cascade Enzymes. ACS Catalysis, 2018, 8, 5611-5620.	5. 5	115
16	Construction of a BioBrickâ,,¢ compatible vector system for Rhodococcus. Plasmid, 2017, 90, 1-4.	0.4	16
17	Structure and Function of the Stressosome Signalling Hub. Sub-Cellular Biochemistry, 2017, 83, 1-41.	1.0	38
18	Spatial organization of multi-enzyme biocatalytic cascades. Organic and Biomolecular Chemistry, 2017, 15, 4260-4271.	1.5	113

#	Article	IF	Citations
19	The future of biologically inspired nextâ€generation factories for chemicals. Microbial Biotechnology, 2017, 10, 1164-1166.	2.0	11
20	Structural and functional characterization of a small chitinâ€active lytic polysaccharide monooxygenase domain of a multiâ€modular chitinase from ⟨i⟩Jonesia denitrificans⟨/i⟩. FEBS Letters, 2016, 590, 34-42.	1.3	31
21	Genome of Diaporthe sp. provides insights into the potential inter-phylum transfer of a fungal sesquiterpenoid biosynthetic pathway. Fungal Biology, 2016, 120, 1050-1063.	1.1	13
22	Encapsulation of multiple cargo proteins within recombinant Eut nanocompartments. Applied Microbiology and Biotechnology, 2016, 100, 9187-9200.	1.7	59
23	A roadmap for biocatalysis – functional and spatial orchestration of enzyme cascades. Microbial Biotechnology, 2016, 9, 601-609.	2.0	115
24	Engineering formation of multiple recombinant Eut protein nanocompartments in E. coli. Scientific Reports, 2016, 6, 24359.	1.6	52
25	Biocatalytic portfolio of Basidiomycota. Current Opinion in Chemical Biology, 2016, 31, 40-49.	2.8	55
26	Moonlighting Metals: Insights into Regulation of Cyclization Pathways in Fungal ĵ" ⁶ â€Protoilludene Sesquiterpene Synthases. ChemBioChem, 2015, 16, 2191-2199.	1.3	17
27	<scp>N</scp> ext <scp>G</scp> en microbial natural products discovery. Microbial Biotechnology, 2015, 8, 26-28.	2.0	20
28	A Tale of Two Reductases: Extending the Bacteriochlorophyll Biosynthetic Pathway in E. coli. PLoS ONE, 2014, 9, e89734.	1.1	3
29	Biosynthesis of Terpenoid Natural Products in Fungi. Advances in Biochemical Engineering/Biotechnology, 2014, 148, 19-61.	0.6	80
30	Designer microbes for biosynthesis. Current Opinion in Biotechnology, 2014, 29, 55-61.	3.3	23
31	Traversing the fungal terpenome. Natural Product Reports, 2014, 31, 1449-1473.	5.2	287
32	Eut Bacterial Microcompartments: Insights into Their Function, Structure, and Bioengineering Applications. Journal of Molecular Microbiology and Biotechnology, 2013, 23, 308-320.	1.0	29
33	Mushroom Hunting by Using Bioinformatics: Application of a Predictive Framework Facilitates the Selective Identification of Sesquiterpene Synthases in Basidiomycota. ChemBioChem, 2013, 14, 2480-2491.	1.3	63
34	Engineered Protein Nano-Compartments for Targeted Enzyme Localization. PLoS ONE, 2012, 7, e33342.	1.1	145
35	Engineering of Biocatalysts: from Evolution to Creation. ACS Catalysis, 2011, 1, 1017-1021.	5 . 5	80
36	Investigation of cellular targeting of carotenoid pathway enzymes in Pichia pastoris. Journal of Biotechnology, 2009, 140, 227-233.	1.9	21

#	Article	IF	CITATIONS
37	Metabolic engineering of Pichia pastoris X-33 for lycopene production. Process Biochemistry, 2009, 44, 1095-1102.	1.8	109
38	Characterization of Three Homologs of the Large Subunit of the Magnesium Chelatase from Chlorobaculum tepidum and Interaction with the Magnesium Protoporphyrin IX Methyltransferase. Journal of Biological Chemistry, 2008, 283, 27776-27784.	1.6	18
39	Creating Carotenoid Diversity in E. coli Cells using Combinatorial and Directed Evolution Strategies. Phytochemistry Reviews, 2006, 5, 67-74.	3.1	19
40	Current and Emerging Approaches for Natural Product Biosynthesis in Microbial Cells. Advanced Synthesis and Catalysis, 2005, 347, 927-940.	2.1	36
41	Molecular breeding of carotenoid biosynthetic pathways. Nature Biotechnology, 2000, 18, 750-753.	9.4	327