Giuseppe Mangialardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10498399/publications.pdf

Version: 2024-02-01

23 1,488 16 22
papers citations h-index g-index

23 23 2403
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Human CD133 ⁺ Progenitor Cells Promote the Healing of Diabetic Ischemic Ulcers by Paracrine Stimulation of Angiogenesis and Activation of Wnt Signaling. Circulation Research, 2009, 104, 1095-1102.	4.5	234
2	Diabetes Mellitus Induces Bone Marrow Microangiopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 498-508.	2.4	207
3	Pericytes, an overlooked player in vascular pathobiology. , 2017, 171, 30-42.		165
4	Combined Intramyocardial Delivery of Human Pericytes and Cardiac Stem Cells Additively Improves the Healing of Mouse Infarcted Hearts Through Stimulation of Vascular and Muscular Repair. Circulation Research, 2015, 116, e81-94.	4.5	116
5	Role of Kinin B 2 Receptor Signaling in the Recruitment of Circulating Progenitor Cells With Neovascularization Potential. Circulation Research, 2008, 103, 1335-1343.	4.5	108
6	Gestational Diabetes Mellitus Impairs Fetal Endothelial Cell Functions Through a Mechanism Involving MicroRNA-101 and Histone Methyltransferase Enhancer of Zester Homolog-2. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 664-674.	2.4	100
7	Zoledronic acid affects over-angiogenic phenotype of endothelial cells in patients with multiple myeloma. Molecular Cancer Therapeutics, 2007, 6, 3256-3262.	4.1	74
8	Bortezomib and zoledronic acid on angiogenic and vasculogenic activities of bone marrow macrophages in patients with multiple myeloma. European Journal of Cancer, 2010, 46, 420-429.	2.8	65
9	Diabetes Causes Bone Marrow Endothelial Barrier Dysfunction by Activation of the RhoA–Rho-Associated Kinase Signaling Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 555-564.	2.4	64
10	Expansion and Characterization of Neonatal Cardiac Pericytes Provides a Novel Cellular Option for Tissue Engineering in Congenital Heart Disease. Journal of the American Heart Association, 2015, 4, e002043.	3.7	64
11	Epigenetic Profile of Human Adventitial Progenitor Cells Correlates With Therapeutic Outcomes in a Mouse Model of Limb Ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 675-688.	2.4	38
12	Transplantation of Allogeneic Pericytes Improves Myocardial Vascularization and Reduces Interstitial Fibrosis in a Swine Model of Reperfused Acute Myocardial Infarction. Journal of the American Heart Association, 2018, 7, .	3.7	38
13	The bone marrow pericyte: an orchestrator of vascular niche. Regenerative Medicine, 2016, 11, 883-895.	1.7	35
14	Bone marrow pericyte dysfunction in individuals with type 2 diabetes. Diabetologia, 2019, 62, 1275-1290.	6.3	32
15	Increased Antioxidant Defense Mechanism in Human Adventitia-Derived Progenitor Cells Is Associated with Therapeutic Benefit in Ischemia. Antioxidants and Redox Signaling, 2014, 21, 1591-1604.	5 . 4	29
16	Diabetes Stimulates Osteoclastogenesis by Acidosis-Induced Activation of Transient Receptor Potential Cation Channels. Scientific Reports, 2016, 6, 30639.	3.3	29
17	Reactive Oxygen Species Adversely Impacts Bone Marrow Microenvironment in Diabetes. Antioxidants and Redox Signaling, 2014, 21, 1620-1633.	5.4	24
18	Bone Marrow-Derived Stem Cells: a Mixed Blessing in the Multifaceted World of Diabetic Complications. Current Diabetes Reports, 2016, 16, 43.	4.2	16

#	Article	IF	CITATIONS
19	The adipokine leptin modulates adventitial pericyte functions by autocrine and paracrine signalling. Scientific Reports, 2017, 7, 5443.	3.3	15
20	Migration towards SDF-1 selects angiogenin-expressing bone marrow monocytes endowed with cardiac reparative activity in patients with previous myocardial infarction. Stem Cell Research and Therapy, 2015, 6, 53.	5.5	12
21	Secreted Protein Acidic and Cysteine Rich Matricellular Protein is Enriched in the Bioactive Fraction of the Human Vascular Pericyte Secretome. Antioxidants and Redox Signaling, 2021, 34, 1151-1164.	5.4	11
22	Bone Marrow Microenvironment: A Newly Recognized Target for Diabetes- Induced Cellular Damage. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2012, 12, 159-167.	1.2	9
23	Enhancing Stem Cell Mobility: New Hope for Treatment of Cardiovascular Complications in Patients With Diabetes?: Figure 1. Diabetes, 2015, 64, 2704-2707.	0.6	3