
Jésus Raya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10498380/publications.pdf Version: 2024-02-01

ΙÃΩςμς Ρλγλ

#	Article	IF	Citations
1	Metallated Isoindigo–Porphyrin Covalent Organic Framework Photocatalyst with a Narrow Band Gap for Efficient CO ₂ Conversion. ACS Applied Materials & Interfaces, 2022, 14, 2015-2022.	8.0	31
2	Infrared spectroscopy quantification of functional carbon groups in kerogens and coals: A calibration procedure. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 259, 119853.	3.9	12
3	Remarkably efficient removal of toxic bromate from drinking water with a porphyrin–viologen covalent organic framework. Chemical Science, 2020, 11, 845-850.	7.4	63
4	Is carboxylation an efficient method for graphene oxide functionalization?. Nanoscale Advances, 2020, 2, 4085-4092.	4.6	26
5	Rapid and Efficient Removal of Perfluorooctanoic Acid from Water with Fluorine-Rich Calixarene-Based Porous Polymers. ACS Applied Materials & Interfaces, 2020, 12, 43160-43166.	8.0	40
6	Kinetics of 1H–13C multiple-contact cross-polarization as a powerful tool to determine the structure and dynamics of complex materials: application to graphene oxide. Physical Chemistry Chemical Physics, 2020, 22, 12209-12227.	2.8	14
7	A concerted evolution of supramolecular interactions in a {cation; metal complex; π-acid; solvent} anion-Ï€ system. Inorganic Chemistry Frontiers, 2020, 7, 1851-1863.	6.0	6
8	Fast and efficient removal of paraquat in water by porous polycalix[<i>n</i>]arenes (<i>n</i> = 4, 6,) Tj ETQq0 0	0 rgBT /O\ 19.3	verlock 10 Tf
9	Synthesis of Robust MOFs@COFs Porous Hybrid Materials via an Azaâ€Diels–Alder Reaction: Towards Highâ€Performance Supercapacitor Materials. Angewandte Chemie, 2020, 132, 19770-19777.	2.0	13
10	Synthesis of Robust MOFs@COFs Porous Hybrid Materials via an Azaâ€Diels–Alder Reaction: Towards Highâ€Performance Supercapacitor Materials. Angewandte Chemie - International Edition, 2020, 59, 19602-19609.	13.8	133
11	Strategies for the Controlled Covalent Double Functionalization of Graphene Oxide. Chemistry - A European Journal, 2020, 26, 6591-6598.	3.3	27
12	A Straightforward Approach to Multifunctional Graphene. Chemistry - A European Journal, 2019, 25, 13218-13223.	3.3	12
13	Trichogin GA IV Alignment and Oligomerization in Phospholipid Bilayers. ChemBioChem, 2019, 20, 2141-2150.	2.6	10

14	Solid-State NMR Approaches to Study Protein Structure and Protein–Lipid Interactions. Methods in Molecular Biology, 2019, 2003, 563-598.	0.9	5
15	Thioether-Crown-Rich Calix[4]arene Porous Polymer for Highly Efficient Removal of Mercury from Water. ACS Applied Materials & Interfaces, 2019, 11, 12898-12903.	8.0	52
16	Calix[4]arene-Based Porous Organic Nanosheets. ACS Applied Materials & Interfaces, 2018, 10, 17359-17365.	8.0	39
17	Redoxâ€Responsive Covalent Organic Nanosheets from Viologens and Calix[4]arene for Iodine and Toxic Dye Capture. Chemistry - A European Journal, 2018, 24, 8648-8655.	3.3	43

18Porous Polycalix[4] arenes for Fast and Efficient Removal of Organic Micropollutants from Water.
ACS Applied Materials & amp; Interfaces, 2018, 10, 2976-2981.8.087

Jésus Raya

#	Article	IF	CITATIONS
19	Controlled derivatization of hydroxyl groups of graphene oxide in mild conditions. 2D Materials, 2018, 5, 035037.	4.4	42
20	Viologen-Based Conjugated Covalent Organic Networks via Zincke Reaction. Journal of the American Chemical Society, 2017, 139, 9558-9565.	13.7	228
21	Structural Characterization of the Amyloid Precursor Protein Transmembrane Domain and Its γ-Cleavage Site. ACS Omega, 2017, 2, 6525-6534.	3.5	26
22	Lithiated Polycalix[4]arenes for Efficient Adsorption of Iodine from Solution and Vapor Phases. Chemistry of Materials, 2017, 29, 8968-8972.	6.7	117
23	pH-Dependent Membrane Interactions of the Histidine-Rich Cell-Penetrating Peptide LAH4-L1. Biophysical Journal, 2017, 113, 1290-1300.	0.5	51
24	Elucidation of siRNA complexation efficiency by graphene oxide and reduced graphene oxide. Carbon, 2017, 122, 643-652.	10.3	29
25	An ultra-absorbent alkyne-rich porous covalent polycalix[4]arene for water purification. Journal of Materials Chemistry A, 2017, 5, 62-66.	10.3	77
26	Characterization of biomass char formation investigated by advanced solid state NMR. Carbon, 2016, 108, 165-177.	10.3	54
27	Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR. Nanoscale, 2016, 8, 13714-13721.	5.6	136
28	Alamethicin Supramolecular Organization in Lipid Membranes from 19F Solid-State NMR. Biophysical Journal, 2016, 111, 2450-2459.	0.5	28
29	Biobased Composite Films from Chitosan and Lignin: Antioxidant Activity Related to Structure and Moisture. ACS Sustainable Chemistry and Engineering, 2016, 4, 6371-6381.	6.7	103
30	Covalent Tethering and Residues with Bulky Hydrophobic Side Chains Enable Selfâ€Assembly of Distinct Amyloid Structures. ChemBioChem, 2016, 17, 2274-2285.	2.6	9
31	High Resolution Solid State 2D NMR Analysis of Biomass and Biochar. Analytical Chemistry, 2015, 87, 843-847.	6.5	46
32	Water-induced local ordering of chitosan polymer chains in thin layer films. Carbohydrate Polymers, 2015, 118, 107-114.	10.2	18
33	15N chemical shift referencing in solid state NMR. Solid State Nuclear Magnetic Resonance, 2014, 61-62, 15-18.	2.3	112
34	New Insights into the Hydrogen Bond Network in Al-MIL-53 and Ga-MIL-53. Journal of Physical Chemistry C, 2014, 118, 22021-22029.	3.1	34
35	Chemical shift powder spectra enhanced by multiple-contact cross-polarization under slow magic-angle spinning. Journal of Magnetic Resonance, 2013, 227, 93-102.	2.1	23
36	Double Functionalization of Carbon Nanotubes with Purine and Pyrimidine Derivatives. Chemistry - an Asian Journal, 2013, 8, 1472-1481.	3.3	15

Jésus Raya

#	Article	IF	CITATIONS
37	Carbon Nanotube–Nucleobase Hybrids: Nanorings from Uracilâ€Modified Singleâ€Walled Carbon Nanotubes. Chemistry - A European Journal, 2011, 17, 6772-6780.	3.3	41
38	Insertion of indigo molecules in the sepiolite structure as evidenced by 1H–29Si heteronuclear correlation spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 14508.	2.8	27
39	The Incorporation of Indigo Molecules in Sepiolite Tunnels. Chemistry - A European Journal, 2009, 15, 11326-11332.	3.3	67
40	Synthesis and Characterization of Nucleobaseâ^'Carbon Nanotube Hybrids. Journal of the American Chemical Society, 2009, 131, 13555-13562.	13.7	71
41	Self-Promoted Cellular Uptake of Peptide/DNA Transfection Complexes. Biochemistry, 2007, 46, 11253-11262.	2.5	50
42	13C/15N distance determination by CPMAS NMR in uniformly13C labeled molecules. Magnetic Resonance in Chemistry, 2006, 44, 174-177.	1.9	0
43	19F/29Si distance determination and heteronuclear spin counting under fast magic-angle spinning in fluoride-containing octadecasil. Comptes Rendus Chimie, 2004, 7, 363-369.	0.5	4
44	l19F/29Si Rotational-Echo Double-Resonance and Heteronuclear Spin Counting under Fast Magic-Angle Spinning in Fluoride-Containing Octadecasil. Solid State Nuclear Magnetic Resonance, 2002, 22, 188-203.	2.3	9
45	distance determination in fluoride-containing octadecasil by Hartmann–Hahn cross-polarization under fast magic-angle spinning. Solid State Nuclear Magnetic Resonance, 1999, 13, 219-229.	2.3	54