Hong Seok Jo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10497990/publications.pdf

Version: 2024-02-01

38 papers	1,523 citations	279798 23 h-index	315739 38 g-index
рирего	Citations	II IIICCA	g mucx
38 all docs	38 docs citations	38 times ranked	1970 citing authors

#	Article	IF	CITATIONS
1	Selfâ€Junctioned Copper Nanofiber Transparent Flexible Conducting Film via Electrospinning and Electroplating. Advanced Materials, 2016, 28, 7149-7154.	21.0	141
2	Highly flexible, stretchable, patternable, transparent copper fiber heater on a complex 3D surface. NPG Asia Materials, 2017, 9, e347-e347.	7.9	113
3	Highly flexible transparent self-healing composite based on electrospun core–shell nanofibers produced by coaxial electrospinning for anti-corrosion and electrical insulation. Nanoscale, 2015, 7, 17778-17785.	5.6	91
4	Flexible, Freestanding, and Binder-free SnO _{<i>x</i>} â€"ZnO/Carbon Nanofiber Composites for Lithium Ion Battery Anodes. ACS Applied Materials & Interfaces, 2016, 8, 9446-9453.	8.0	83
5	Self-Healing Nanofiber-Reinforced Polymer Composites. 1. Tensile Testing and Recovery of Mechanical Properties. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19546-19554.	8.0	78
6	Wearable, Stretchable, Transparent All-in-One Soft Sensor Formed from Supersonically Sprayed Silver Nanowires. ACS Applied Materials & Samp; Interfaces, 2019, 11, 40232-40242.	8.0	62
7	Self-healing Nanofiber-Reinforced Polymer Composites. 2. Delamination/Debonding and Adhesive and Cohesive Properties. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19555-19561.	8.0	57
8	Supersonically sprayed reduced graphene oxide film to enhance critical heat flux in pool boiling. International Journal of Heat and Mass Transfer, 2016, 98, 124-130.	4.8	57
9	Hierarchically designed ZIF-8-derived Ni@ZnO/carbon nanofiber freestanding composite for stable Li storage. Chemical Engineering Journal, 2018, 351, 127-134.	12.7	56
10	A comprehensive review on wettability, desalination, and purification using graphene-based materials at water interfaces. Catalysis Today, 2017, 295, 14-25.	4.4	55
11	Decoration of MnO Nanocrystals on Flexible Freestanding Carbon Nanofibers for Lithium Ion Battery Anodes. Electrochimica Acta, 2017, 231, 582-589.	5.2	53
12	Enhancement of critical heat flux and superheat through controlled wettability of cuprous-oxide fractal-like nanotextured surfaces in pool boiling. International Journal of Heat and Mass Transfer, 2017, 107, 105-111.	4.8	48
13	Sustainable Nanotextured Wave Energy Harvester Based on Ferroelectric Fatigueâ€Free and Flexoelectricityâ€Enhanced Piezoelectric P(VDFâ€TrFE) Nanofibers with BaSrTiO ₃ Nanoparticles. Advanced Functional Materials, 2020, 30, 2001150.	14.9	47
14	Scalable Binder-Free Supersonic Cold Spraying of Nanotextured Cupric Oxide (CuO) Films as Efficient Photocathodes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 15406-15414.	8.0	44
15	Nanotextured cupric oxide nanofibers coated with atomic layer deposited ZnO-TiO2 as highly efficient photocathodes. Applied Catalysis B: Environmental, 2017, 201, 479-485.	20.2	41
16	Wearable transparent thermal sensors and heaters based on metal-plated fibers and nanowires. Nanoscale, 2018, 10, 19825-19834.	5.6	40
17	Supersonically spray-coated copper meshes as textured surfaces for pool boiling. International Journal of Thermal Sciences, 2018, 132, 26-33.	4.9	32
18	Silver-decorated and palladium-coated copper-electroplated fibers derived from electrospun polymer nanofibers. Chemical Engineering Journal, 2017, 327, 336-342.	12.7	30

#	Article	IF	CITATIONS
19	Flexible and freestanding core-shell SnO /carbon nanofiber mats for high-performance supercapacitors. Journal of Alloys and Compounds, 2017, 728, 1362-1371.	5.5	29
20	Oxidation-resistant metallized nanofibers as transparent conducting films and heaters. Acta Materialia, 2018, 143, 174-180.	7.9	29
21	Transparent Body-Attachable Multifunctional Pressure, Thermal, and Proximity Sensor and Heater. Scientific Reports, 2020, 10, 2701.	3.3	28
22	Carbon Nanofibers Loaded with Carbon Nanotubes and Iron Oxide as Flexible Freestanding Lithium-Ion Battery Anodes. Electrochimica Acta, 2017, 253, 479-488.	5.2	27
23	High-performance supercapacitors using flexible and freestanding MnOx/carbamide carbon nanofibers. Applied Surface Science, 2017, 423, 210-218.	6.1	26
24	Modifying capillary pressure and boiling regime of micro-porous wicks textured with graphene oxide. Applied Thermal Engineering, 2018, 128, 1605-1610.	6.0	26
25	Supersonically Blown Ultrathin Thorny Devil Nanofibers for Efficient Air Cooling. ACS Applied Materials & Samp; Interfaces, 2014, 6, 13657-13666.	8.0	24
26	Electrically-charged recyclable graphene flakes entangled with electrospun nanofibers for the adsorption of organics for water purification. Nanoscale, 2015, 7, 19170-19177.	5.6	23
27	Effects of capillarity on pool boiling using nano-textured surfaces through electrosprayed BiVO4 nano-pillars. Chemical Engineering Science, 2017, 171, 360-367.	3.8	23
28	Novel Composite Layer Based on Electrospun Polymer Nanofibers for Efficient Light Scattering. ACS Applied Materials & Samp; Interfaces, 2015, 7, 68-74.	8.0	22
29	Bio-inspired, colorful, flexible, defrostable light-scattering hybrid films for the effective distribution of LED light. Nanoscale, 2017, 9, 9139-9147.	5. 6	21
30	Nano-textured copper oxide nanofibers for efficient air cooling. Journal of Applied Physics, 2016, 119, 065306.	2.5	20
31	Freestanding fiber mats of zeolitic imidazolate framework 7 via oneâ€step, scalable electrospinning. Journal of Applied Polymer Science, 2016, 133, .	2.6	19
32	Facile processes for producing robust, transparent, conductive platinum nanofiber mats. Nanoscale, 2017, 9, 6076-6084.	5.6	19
33	Supersonically sprayed, triangular copper lines for pool boiling enhancement. International Journal of Heat and Mass Transfer, 2017, 113, 210-216.	4.8	15
34	Wearable multifunctional soft sensor and contactless 3D scanner using supersonically sprayed silver nanowires, carbon nanotubes, zinc oxide, and PEDOT:PSS. NPG Asia Materials, 2022, 14, .	7.9	14
35	Thermally driven self-healing using copper nanofiber heater. Applied Physics Letters, 2017, 111, .	3.3	9
36	Nano-textured surfaces using hybrid micro- and nano-materials for efficient water cooling. International Journal of Heat and Mass Transfer, 2018, 123, 1120-1127.	4.8	8

#	Article	lF	CITATIONS
37	Enhanced electrical conductivity of transparent electrode using metal microfiber networks for gridless thin-film solar cells. Solar Energy Materials and Solar Cells, 2019, 200, 109998.	6.2	8
38	Polyacrylonitrile nanofibers with added zeolitic imidazolate frameworks (ZIF-7) to enhance mechanical and thermal stability. Journal of Applied Physics, 2015, 118, 245307.	2.5	5