Muriel Bonnet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1049776/publications.pdf

Version: 2024-02-01

		186209		155592	
59	3,476	28		55	
papers	citations	h-index		g-index	
			. '		
59	59	59		3523	
39	33	39		3323	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Liver proteome profiling in dairy cows during the transition from gestation to lactation: Effects of supplementation with essential fatty acids and conjugated linoleic acids as explored by PLS-DA. Journal of Proteomics, 2022, 252, 104436.	1.2	3
2	Plasma proteomics reveals crosstalk between lipid metabolism and immunity in dairy cows receiving essential fatty acids and conjugated linoleic acid. Scientific Reports, 2022, 12, 5648.	1.6	5
3	Autophagy in farm animals: current knowledge and future challenges. Autophagy, 2021, 17, 1809-1827.	4.3	19
4	An open-access computer image analysis (CIA) method to predict meat and fat content from an android smartphone-derived picture of the bovine 5th-6th rib. Methods, 2021, 186, 79-89.	1.9	11
5	Guest Editor introduction. Methods, 2021, 186, 1-2.	1.9	O
6	The Blonde d'Aquitaine T3811>G3811 mutation in the <i>myostatin</i> gene: association with growth, carcass, and muscle phenotypes in veal calves. Journal of Animal Science, 2021, 99, .	0.2	1
7	Combining labelâ€free and labelâ€based accurate quantifications with SWATHâ€MS: Comparison with SRM and PRM for the evaluation of bovine muscle type effects. Proteomics, 2021, 21, e2000214.	1.3	5
8	Molecular signatures of muscle growth and composition deciphered by the meta-analysis of age-related public transcriptomics data. Physiological Genomics, 2020, 52, 322-332.	1.0	13
9	Protein Array-Based Approach to Evaluate Biomarkers of Beef Tenderness and Marbling in Cows: Understanding of the Underlying Mechanisms and Prediction. Foods, 2020, 9, 1180.	1.9	30
10	Prediction of the Secretome and the Surfaceome: A Strategy to Decipher the Crosstalk between Adipose Tissue and Muscle during Fetal Growth. International Journal of Molecular Sciences, 2020, 21, 4375.	1.8	2
11	Quantification of biomarkers for beef meat qualities using a combination of Parallel Reaction Monitoring- and antibody-based proteomics. Food Chemistry, 2020, 317, 126376.	4.2	17
12	Dataset reporting 4654 cow milk proteins listed according to lactation stages and milk fractions. Data in Brief, 2020, 29, 105105.	0.5	28
13	Milk proteome from in silico data aggregation allows the identification of putative biomarkers of negative energy balance in dairy cows. Scientific Reports, 2019, 9, 9718.	1.6	34
14	Pathways and biomarkers of marbling and carcass fat deposition in bovine revealed by a combination of gel-based and gel-free proteomic analyses. Meat Science, 2019, 156, 146-155.	2.7	24
15	Beef tenderness and intramuscular fat proteomic biomarkers: Effect of gender and rearing practices. Journal of Proteomics, 2019, 200, 1-10.	1.2	37
16	Proteomics Research in the Adipose Tissue. , 2018, , 233-254.		11
17	Reverse phase protein arrays for the identification/validation of biomarkers of beef texture and their use for early classification of carcasses. Food Chemistry, 2018, 250, 245-252.	4.2	40
18	Milk Fat Globule in Ruminant: Major and Minor Compounds, Nutritional Regulation and Differences Among Species. European Journal of Lipid Science and Technology, 2018, 120, 1700039.	1.0	54

#	Article	IF	CITATIONS
19	Beef tenderness and intramuscular fat proteomic biomarkers: muscle type effect. PeerJ, 2018, 6, e4891.	0.9	42
20	Reverse Phase Protein array for the quantification and validation of protein biomarkers of beef qualities: The case of meat color from Charolais breed. Meat Science, 2018, 145, 308-319.	2.7	41
21	How Muscle Structure and Composition Influence Meat and Flesh Quality. Scientific World Journal, The, 2016, 2016, 1-14.	0.8	432
22	The Invalidation of HspB1 Gene in Mouse Alters the Ultrastructural Phenotype of Muscles. PLoS ONE, 2016, 11, e0158644.	1.1	19
23	Invited review: Pre- and postnatal adipose tissue development in farm animals: from stem cells to adipocyte physiology. Animal, 2016, 10, 1839-1847.	1.3	44
24	Integrated data mining of transcriptomic and proteomic datasets to predict the secretome of adipose tissue and muscle in ruminants. Molecular BioSystems, 2016, 12, 2722-2734.	2.9	8
25	ProteINSIDE to Easily Investigate Proteomics Data from Ruminants: Application to Mine Proteome of Adipose and Muscle Tissues in Bovine Foetuses. PLoS ONE, 2015, 10, e0128086.	1.1	33
26	Feeding behaviour in ruminants: a consequence of interactions between a reward system and the regulation of metabolic homeostasis. Animal Production Science, 2015, 55, 247.	0.6	44
27	Protein Function Easily Investigated by Genomics Data Mining Using the ProteINSIDE Online Tool. Genomics and Computational Biology, 2015, 1, 16.	0.7	12
28	Environmental Toxicity and Antimicrobial Efficiency of Titanium Dioxide Nanoparticles in Suspension. Journal of Biomaterials and Nanobiotechnology, 2015, 06, 213-224.	1.0	25
29	Selection of reference genes for quantitative real-time PCR normalisation in adipose tissue, muscle, liver and mammary gland from ruminants. Animal, 2013, 7, 1344-1353.	1.3	87
30	Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal, 2013, 7, 132-162.	1.3	657
31	A grass-based diet favours muscle n-3 long-chain PUFA deposition without modifying gene expression of proteins involved in their synthesis or uptake in Charolais steers. Animal, 2013, 7, 1833-1840.	1.3	3
32	Breed and dietary linseed affect gene expression of enzymes and transcription factors involved in n-3 long chain polyunsaturated fatty acids synthesis in longissimus thoracis muscle of bulls1. Journal of Animal Science, 2013, 91, 3059-3069.	0.2	14
33	Quest for biomarkers of the lean-to-fat ratio by proteomics in beef production., 2013,, 43-44.		0
34	Effect of the level and type of starchy concentrate on tissue lipid metabolism, gene expression and milk fatty acid secretion in Alpine goats receiving a diet rich in sunflower-seed oil. British Journal of Nutrition, 2012, 107, 1147-1159.	1.2	29
35	Foetal bovine intermuscular adipose tissue exhibits histological and metabolic features of brown and white adipocytes during the last third of pregnancy. Animal, 2012, 6, 641-649.	1.3	9
36	Expression of Enzymes and Transcription Factors Involved in nâ€3 Long Chain PUFA Biosynthesis in Limousin Bull Tissues. Lipids, 2012, 47, 391-401.	0.7	20

#	Article	IF	Citations
37	Cellular and molecular largeâ€scale features of fetal adipose tissue: Is bovine perirenal adipose tissue Brown1685. Journal of Cellular Physiology, 2012, 227, 1688-1700.	2.0	25
38	Quest for Novel Muscle Pathway Biomarkers by Proteomics in Beef Production., 2011,, 395-405.		5
39	Functional analysis of beef tenderness. Journal of Proteomics, 2011, 75, 352-365.	1.2	106
40	Adipocyte metabolism and cellularity are related to differences in adipose tissue maturity between Holstein and Charolais or Blond d'Aquitaine fetuses1. Journal of Animal Science, 2011, 89, 711-721.	0.2	32
41	Ontogenesis of muscle and adipose tissues and their interactions in ruminants and other species. Animal, 2010, 4, 1093-1109.	1.3	101
42	Sunflower-seed oil, rapidly-degradable starch, and adiposity up-regulate leptin gene expression in lactating goats. Domestic Animal Endocrinology, 2009, 37, 93-103.	0.8	10
43	Effect of sunflower-seed oil and linseed oil on tissue lipid metabolism, gene expression, and milk fatty acid secretion in Alpine goats fed maize silage–based diets. Journal of Dairy Science, 2009, 92, 6083-6094.	1.4	77
44	Image Analysis and Data Normalization Procedures are Crucial for Microarray Analyses. Gene Regulation and Systems Biology, 2008, 2, GRSB.S414.	2.3	5
45	Adipocyte fatty acid-binding protein and mitochondrial enzyme activities in muscles as relevant indicators of marbling in cattle1. Journal of Animal Science, 2007, 85, 2660-2669.	0.2	122
46	Glucose-6-phosphate dehydrogenase and leptin are related to marbling differences among Limousin and Angus or Japanese Black A— Angus steers1,2. Journal of Animal Science, 2007, 85, 2882-2894.	0.2	57
47	Expression and nutritional regulation of lipogenic genes in mammary gland and adipose tissues of lactating goats. Journal of Dairy Research, 2005, 72, 250-255.	0.7	54
48	Pregnancy increases plasma leptin in nulliparous but not primiparous goats while lactation depresses it. Domestic Animal Endocrinology, 2005, 28, 216-223.	0.8	20
49	Leptin expression in ruminants: Nutritional and physiological regulations in relation with energy metabolism. Domestic Animal Endocrinology, 2005, 29, 3-22.	0.8	219
50	Nutritional status induces divergent variations of GLUT4 protein content, but not lipoprotein lipase activity, between adipose tissues and muscles in adult cattle. British Journal of Nutrition, 2004, 92, 617-625.	1.2	25
51	Mammary leptin synthesis, milk leptin and their putative physiological roles. Reproduction, Nutrition, Development, 2002, 42, 399-413.	1.9	78
52	Leptin expression in the ovine mammary gland: putative sequential involvement of adipose, epithelial, and myoepithelial cells during pregnancy and lactation1. Journal of Animal Science, 2002, 80, 723-728.	0.2	59
53	A fluorescent reverse transcription—polymerase chain reaction assay to quantify the lipoprotein lipase messenger RNA. Molecular and Cellular Probes, 2001, 15, 187-194.	0.9	12
54	Leptin in ruminants. Gene expression in adipose tissue and mammary gland, and regulation of plasma concentration. Domestic Animal Endocrinology, 2001, 21, 271-295.	0.8	174

#	Article	IF	CITATION
55	Effects of photoperiod and feeding level on adipose tissue and muscle lipoprotein lipase activity and mRNA level in dry non-pregnant sheep. British Journal of Nutrition, 2001, 85, 299-306.	1.2	41
56	Lipoprotein Lipase Activity and mRNA Are Up-Regulated by Refeeding in Adipose Tissue and Cardiac Muscle of Sheep. Journal of Nutrition, 2000, 130, 749-756.	1.3	75
57	Adipose tissue metabolism and its role in adaptations to undernutrition in ruminants. Proceedings of the Nutrition Society, 2000, 59, 127-134.	0.4	197
58	Messenger RNAs encoding lipoprotein lipase, fatty acid synthase and hormone-sensitive lipase in the adipose tissue of underfed-refed ewes and cows. Reproduction, Nutrition, Development, 1998, 38, 297-307.	1.9	34
59	Effects of photoperiod and feeding level on perirenal adipose tissue metabolic activity and leptin synthesis in the ovariectomized ewe. Reproduction, Nutrition, Development, 1998, 38, 489-498.	1.9	95