
Biswanath Sa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10497606/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interpenetrating network hydrogel membranes of sodium alginate and poly(vinyl alcohol) for controlled release of prazosin hydrochloride through skin. International Journal of Biological Macromolecules, 2010, 47, 520-527.	7.5	139
2	Interpenetrating polymer network microcapsules of gellan gum and egg albumin entrapped with diltiazem–resin complex for controlled release application. Carbohydrate Polymers, 2011, 83, 1001-1007.	10.2	99
3	Ca2+ ion cross-linked interpenetrating network matrix tablets of polyacrylamide-grafted-sodium alginate and sodium alginate for sustained release of diltiazem hydrochloride. Carbohydrate Polymers, 2010, 82, 867-873.	10.2	96
4	Novel interpenetrating network microspheres of xanthan gum–poly(vinyl alcohol) for the delivery of diclofenac sodium to the intestine—in vitro and in vivo evaluation. Drug Delivery, 2010, 17, 508-519.	5.7	86
5	Evaluation of pH-Sensitivity and Drug Release Characteristics of (Polyacrylamide- <i>Grafted</i> -Xanthan)–Carboxymethyl Cellulose-Based pH-Sensitive Interpenetrating Network Hydrogel Beads. Drug Development and Industrial Pharmacy, 2008, 34, 1406-1414.	2.0	73
6	Electroresponsive Polyacrylamide-grafted-xanthan Hydrogels for Drug Delivery. Journal of Bioactive and Compatible Polymers, 2009, 24, 368-384.	2.1	70
7	Novel pH-Sensitive Interpenetrating Network Hydrogel Beads of Carboxymethylcellulose – () Tj ETQq1 1 0.784 Characterization. Current Drug Delivery, 2008, 5, 256-264.	1314 rgBT 1.6	/Overlock 10 65
8	Tailoring of locust bean gum and development of hydrogel beads for controlled oral delivery of glipizide. Drug Delivery, 2010, 17, 288-300.	5.7	62
9	Ca-carboxymethyl xanthan gum mini-matrices: Swelling, erosion and their impact on drug release mechanism. International Journal of Biological Macromolecules, 2014, 68, 78-85.	7.5	62
10	Organic–Inorganic Composites for Bone Drug Delivery. AAPS PharmSciTech, 2009, 10, 1158-1171.	3.3	58
11	Development and evaluation of xanthan gum-facilitated ethyl cellulose microsponges for controlled percutaneous delivery of diclofenac sodium. Acta Pharmaceutica, 2011, 61, 257-270.	2.0	58
12	Enteric delivery of ketoprofen through functionally modified poly(acrylamide- <i>grafted</i> -xanthan)-based pH-sensitive hydrogel beads: Preparation, <i>in vitro</i> and <i>in vivo</i> evaluation. Journal of Drug Targeting, 2008, 16, 167-177.	4.4	56
13	Polyacrylamide-Grafted-Alginate-Based pH-Sensitive Hydrogel Beads for Delivery of Ketoprofen to the Intestine: in Vitro and in Vivo Evaluation. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 235-251.	3.5	53
14	Porous Bioactive Glass Scaffolds for Local Drug Delivery in Osteomyelitis: Development and In Vitro Characterization. AAPS PharmSciTech, 2010, 11, 1675-1683.	3.3	52
15	Adipic acid dihydrazide treated partially oxidized alginate beads for sustained oral delivery of flurbiprofen. Pharmaceutical Development and Technology, 2009, 14, 461-470.	2.4	51
16	Polyacrylamideâ€ <i>g</i> â€alginateâ€based electrically responsive hydrogel for drug delivery application: Synthesis, characterization, and formulation development. Journal of Applied Polymer Science, 2010, 115, 1180-1188.	2.6	50
17	Alginate-Coated Alginate-Polyethyleneimine Beads for Prolonged Release of Furosemide in Simulated Intestinal Fluid. Drug Development and Industrial Pharmacy, 2005, 31, 435-446.	2.0	47
18	Sustained Release of a Water-Soluble Drug from Alginate Matrix Tablets Prepared by Wet Granulation Method. AAPS PharmSciTech, 2009, 10, 1348-56.	3.3	44

BISWANATH SA

#	Article	IF	CITATIONS
19	Effect of ionic crosslink on the release of metronidazole from partially carboxymethylated guar gum tablet. Carbohydrate Polymers, 2014, 106, 414-421.	10.2	42
20	Effect of carboxymethylation on rheological and drug release characteristics of locust bean gum matrix tablets. Carbohydrate Polymers, 2016, 144, 50-58.	10.2	42
21	Novel pH-sensitive IPNs of polyacrylamide-g-gum ghatti and sodium alginate for gastro-protective drug delivery. International Journal of Biological Macromolecules, 2015, 75, 133-143.	7.5	39
22	Drug-Eluting Implants for Osteomyelitis. Critical Reviews in Therapeutic Drug Carrier Systems, 2007, 24, 493-545.	2.2	30
23	Preliminary Investigation on the Development of Diltiazem Resin Complex Loaded Carboxymethyl Xanthan Beads. AAPS PharmSciTech, 2008, 9, 295-301.	3.3	30
24	Interpenetrating polymer network matrices of sodium alginate and carrageenan for controlled drug delivery application. Fibers and Polymers, 2011, 12, 352-358.	2.1	30
25	Development and effect of different bioactive silicate glass scaffolds: In vitro evaluation for use as a bone drug delivery system. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 40, 1-12.	3.1	30
26	Compression-Coated Tablet for Colon Targeting: Impact of Coating and Core Materials on Drug Release. AAPS PharmSciTech, 2016, 17, 504-515.	3.3	29
27	Controlled Release of an Antihypertensive Drug through Interpenetrating Polymer Network Hydrogel Tablets of Tamarind Seed Polysaccharide and Sodium Alginate. Journal of Macromolecular Science - Physics, 2013, 52, 1636-1650.	1.0	26
28	Interpenetrating network hydrogel beads of carboxymethylcellulose and egg albumin for controlled release of lipid lowering drug. Journal of Microencapsulation, 2010, 27, 337-344.	2.8	25
29	Novel pH-sensitive interpenetrated network polyspheres of polyacrylamide-g-locust bean gum and sodium alginate for intestinal targeting of ketoprofen: In vitro and in vivo evaluation. Colloids and Surfaces B: Biointerfaces, 2019, 180, 362-370.	5.0	25
30	Preparation and in vitro evaluation of polystyrene-coated diltiazem-resin complex by oil-in-water emulsion solvent evaporation method. AAPS PharmSciTech, 2006, 7, E105-E112.	3.3	18
31	Novel etherified locust bean gum-alginate hydrogels for controlled release of glipizide. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 663-683.	3.5	18
32	Impact of gelation period on modified locust bean-alginate interpenetrating beads for oral glipizide delivery. International Journal of Biological Macromolecules, 2015, 76, 176-180.	7.5	16
33	Local drug delivery system for the treatment of osteomyelitis: <i>In vitro</i> evaluation. Drug Development and Industrial Pharmacy, 2011, 37, 538-546.	2.0	14
34	Glutaraldehydeâ€crosslinked poly(vinyl alcohol) hydrogel discs for the controlled release of antidiabetic drug. Journal of Applied Polymer Science, 2010, 116, 1732-1738.	2.6	13
35	Development and Characterization of Sodium Alginate-Hydroxypropyl Methylcellulose-Polyester Multilayered Hydrogel Membranes for Drug Delivery through Skin. Polymer-Plastics Technology and Engineering, 2011, 50, 490-497.	1.9	13
36	Gastrointestinal delivery of glipizide from carboxymethyl locust bean gum–Al ³⁺ –alginate hydrogel network: <i>In vitro</i> and <i>in vivo</i> performance. Journal of Applied Polymer Science, 2013, 128, 2063-2072.	2.6	13

BISWANATH SA

#	Article	IF	CITATIONS
37	Development and Evaluation of Ca+ 2 Ion Cross-Linked Carboxymethyl Xanthan Gum Tablet Prepared by Wet Granulation Technique. AAPS PharmSciTech, 2014, 15, 920-927.	3.3	13
38	Nanoreticulations of etherified locust bean polysaccharide for controlled oral delivery of lamivudine. International Journal of Biological Macromolecules, 2014, 65, 193-199.	7.5	12
39	Evaluation of a Matrix Tablet Prepared with Polyacrylamide-g-Sodium Alginate Co-polymers and Their Partially Hydrolyzed Co-polymers for Sustained Release of Diltiazem Hydrochloride. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1799-1814.	3.5	11
40	Smart reticulated hydrogel of functionally decorated gellan copolymer for prolonged delivery of salbutamol sulphate to the gastro-luminal milieu. Journal of Microencapsulation, 2012, 29, 747-758.	2.8	11
41	Effect of polymer concentration and solution pH on viscosity affecting integrity of a polysaccharide coat of compression coated tablets. International Journal of Biological Macromolecules, 2019, 125, 922-930.	7.5	9