Christian Wiraja

List of Publications by Citations

Source: https://exaly.com/author-pdf/10495773/christian-wiraja-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,077 19 31 52 h-index g-index citations papers 8.9 4.76 55 1,391 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
52	Graphene Materials in Antimicrobial Nanomedicine: Current Status and Future Perspectives. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1701406	10.1	130
51	Near-Infrared Fluorescent Molecular Probe for Sensitive Imaging of Keloid. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 1256-1260	16.4	115
50	Framework nucleic acids as programmable carrier for transdermal drug delivery. <i>Nature Communications</i> , 2019 , 10, 1147	17.4	106
49	A Concise Review of Gold Nanoparticles-Based Photo-Responsive Liposomes for Controlled Drug Delivery. <i>Nano-Micro Letters</i> , 2018 , 10, 10	19.5	55
48	Abnormal scar identification with spherical-nucleic-acid technology. <i>Nature Biomedical Engineering</i> , 2018 , 2, 227-238	19	51
47	Near-Infrared Fluorescent Molecular Probe for Sensitive Imaging of Keloid. <i>Angewandte Chemie</i> , 2018 , 130, 1270-1274	3.6	41
46	Upconversion Nanoparticle Powered Microneedle Patches for Transdermal Delivery of siRNA. <i>Advanced Healthcare Materials</i> , 2020 , 9, e1900635	10.1	32
45	Nanosensors for Continuous and Noninvasive Monitoring of Mesenchymal Stem Cell Osteogenic Differentiation. <i>Small</i> , 2016 , 12, 1342-50	11	32
44	Nitric Oxide Nanosensors for Predicting the Development of Osteoarthritis in Rat Model. <i>ACS Applied Materials & Development Materials & Development of Osteoarthritis in Rat Model. ACS Applied Materials & Development of Osteoarthritis in Rat Model. ACS Applied Materials & Development of Osteoarthritis in Rat Model. ACS Applied Materials & Development of Osteoarthritis in Rat Model. ACS Applied Materials & Development of Osteoarthritis in Rat Model. ACS Applied Materials & Development of Osteoarthritis in Rat Model. ACS Applied Materials & Development of Osteoarthritis in Rat Model. ACS Applied Materials & Development of Osteoarthritis in Rat Model. ACS Applied Materials & Development of Osteoarthritis in Rat Model. ACS Applied Materials & Development of Osteoarthritis in Rat Model. ACS Applied Materials & Development of Osteoarthritis in Rat Model. ACS Applied Materials & Development of Osteoarthritis in Rat Model. ACS Applied Materials & Development of Osteoarthritis in Rat Model. ACS Applied Materials & Development of Osteoarthritis in Rat Model. ACS Applied Materials & Development of Osteoarthritis in Rat Model & Development & D</i>	9.5	29
43	Transdermal delivery of small interfering RNAs with topically applied mesoporous silica nanoparticles for facile skin cancer treatment. <i>Nanoscale</i> , 2019 , 11, 17041-17051	7.7	28
42	Peptide delivery with poly(ethylene glycol) diacrylate microneedles through swelling effect. <i>Bioengineering and Translational Medicine</i> , 2017 , 2, 258-267	14.8	28
41	Synergism of Water Shock and a Biocompatible Block Copolymer Potentiates the Antibacterial Activity of Graphene Oxide. <i>Small</i> , 2016 , 12, 951-62	11	26
40	A Nanoparticle-based Sensor Platform for Cell Tracking and Status/Function Assessment. <i>Scientific Reports</i> , 2015 , 5, 14768	4.9	25
39	Layer-by-Layer 3D Constructs of Fibroblasts in Hydrogel for Examining Transdermal Penetration Capability of Nanoparticles. <i>SLAS Technology</i> , 2017 , 22, 447-453	3	23
38	A Double-Layered Microneedle Platform Fabricated through Frozen Spray-Coating. <i>Advanced Healthcare Materials</i> , 2020 , 9, e2000147	10.1	22
37	Near-infrared light-responsive liposomal contrast agent for photoacoustic imaging and drug release applications. <i>Journal of Biomedical Optics</i> , 2017 , 22, 41007	3.5	22
36	Improvement of endothelial progenitor outgrowth cell (EPOC)-mediated vascularization in gelatin-based hydrogels through pore size manipulation. <i>Acta Biomaterialia</i> , 2017 , 58, 225-237	10.8	21

35	Cryomicroneedles for transdermal cell delivery. <i>Nature Biomedical Engineering</i> , 2021 , 5, 1008-1018	19	20
34	Near-infrared light-sensitive liposomes for enhanced plasmid DNA transfection. <i>Bioengineering and Translational Medicine</i> , 2016 , 1, 357-364	14.8	19
33	Smart Magnetic Nanosensors Synthesized through Layer-by-Layer Deposition of Molecular Beacons for Noninvasive and Longitudinal Monitoring of Cellular mRNA. <i>ACS Applied Materials & Description of Interfaces</i> , 2016 , 8, 5877-86	9.5	18
32	Aptamer technology for tracking cellsLbtatus & function. <i>Molecular and Cellular Therapies</i> , 2014 , 2, 33		18
31	Interference-free Micro/nanoparticle Cell Engineering by Use of High-Throughput Microfluidic Separation. <i>ACS Applied Materials & Separation (Materials & Materials & Material</i>	9.5	17
30	Molecular beacon-loaded polymeric nanoparticles for non-invasive imaging of mRNA expression. Journal of Materials Chemistry B, 2015 , 3, 6148-6156	7-3	17
29	Hairpin-structured probe conjugated nano-graphene oxide for the cellular detection of connective tissue growth factor mRNA. <i>Analytica Chimica Acta</i> , 2018 , 1038, 140-147	6.6	14
28	A self-adhesive microneedle patch with drug loading capability through swelling effect. <i>Bioengineering and Translational Medicine</i> , 2020 , 5, e10157	14.8	12
27	Nanodelivery Systems for Topical Management of Skin Disorders. <i>Molecular Pharmaceutics</i> , 2021 , 18, 491-505	5.6	11
26	Temporal pressure enhanced topical drug delivery through micropore formation. <i>Science Advances</i> , 2020 , 6, eaaz6919	14.3	10
25	Nanosensors for regenerative medicine. Journal of Biomedical Nanotechnology, 2014, 10, 2722-46	4	10
24	Functional Imaging with Nucleic-Acid-Based Sensors: Technology, Application and Future Healthcare Prospects. <i>ChemBioChem</i> , 2019 , 20, 437-450	3.8	10
23	Real-Time Imaging of Dynamic Cell Reprogramming with Nanosensors. Small, 2018, 14, e1703440	11	9
22	Stabilization and Topical Skin Delivery of Framework Nucleic Acids using Ionic Liquids. <i>Advanced Therapeutics</i> , 2020 , 3, 2000041	4.9	9
21	Fluorescent Poly(glycerol-co-sebacate) Acrylate Nanoparticles for Stem Cell Labeling and Longitudinal Tracking. <i>ACS Applied Materials & Englished Flaces</i> , 2017 , 9, 9528-9538	9.5	8
20	Reprogramming of macrophages with macrophage cell membrane-derived nanoghosts. <i>Nanoscale Advances</i> , 2020 , 2, 5254-5262	5.1	8
19	Ocular Delivery of Predatory Bacteria with Cryomicroneedles Against Eye Infection. <i>Advanced Science</i> , 2021 , 8, e2102327	13.6	8
18	Heat shock mediated labelling of Pseudomonas aeruginosa with quantum dots. <i>Colloids and Surfaces B: Biointerfaces</i> , 2016 , 142, 259-265	6	7

17	Molecular Beacon Gold Nanosensors for Leucine-Rich Alpha-2-Glycoprotein-1 Detection in Pathological Angiogenesis. <i>ACS Sensors</i> , 2018 , 3, 1647-1655	9.2	7
16	Noninvasive Monitoring of Three-Dimensional Chondrogenic Constructs Using Molecular Beacon Nanosensors. <i>Tissue Engineering - Part C: Methods</i> , 2017 , 23, 12-20	2.9	7
15	Anti-Scarring Drug Screening with Near-Infrared Molecular Probes Targeting Fibroblast Activation Protein- [] ACS Applied Bio Materials, 2018, 1, 2054-2061	4.1	7
14	Oligonucleotide Molecular Sprinkler for Intracellular Detection and Spontaneous Regulation of mRNA for Theranostics of Scar Fibroblasts. <i>Small</i> , 2018 , 14, e1802546	11	7
13	Transdermal delivery of Chinese herbal medicine extract using dissolvable microneedles for hypertrophic scar treatment. <i>Acta Pharmaceutica Sinica B</i> , 2021 , 11, 2937-2944	15.5	7
12	Real-time and non-invasive monitoring of embryonic stem cell survival during the development of embryoid bodies with smart nanosensor. <i>Acta Biomaterialia</i> , 2017 , 49, 358-367	10.8	5
11	Antimicrobial Nanomedicine: Graphene Materials in Antimicrobial Nanomedicine: Current Status and Future Perspectives (Adv. Healthcare Mater. 13/2018). <i>Advanced Healthcare Materials</i> , 2018 , 7, 1870	0559	5
10	Hydrogel-Based Technologies for the Diagnosis of Skin Pathology. <i>Technologies</i> , 2020 , 8, 47	2.4	4
9	The effect of temporal manipulation of transforming growth factor beta 3 and fibroblast growth factor 2 on the derivation of proliferative chondrocytes from mensenchymal stem cells-A study monitored by quantitative reverse transcription polymerase chain reaction and molecular beacon	5.4	4
8	based nanosensors. <i>Journal of Biomedical Materials Research - Part A</i> , 2018 , 106, 895-904 Framework Nucleic Acids: A Paradigm Shift in Transdermal Drug Delivery. <i>SLAS Technology</i> , 2019 , 24, 531-532	3	3
7	Nephrotoxicity Assessment with Human Kidney Tubuloids using Spherical Nucleic Acid-Based mRNA Nanoflares. <i>Nano Letters</i> , 2021 , 21, 5850-5858	11.5	3
6	Microfluidic Buffer Exchange for Interference-free Micro/Nanoparticle Cell Engineering. <i>Journal of Visualized Experiments</i> , 2016 ,	1.6	2
5	Targeted Delivery of Anesthetic Agents to Bone Tissues using Conductive Microneedles Enhanced Iontophoresis for Painless Dental Anesthesia. <i>Advanced Functional Materials</i> ,2105686	15.6	2
4	One-step synthesis of amine-coated ultra-small mesoporous silica nanoparticles. <i>Nano Research</i> , 2020 , 13, 1592-1596	10	1
3	Recent Progress in Skin-on-a-Chip Platforms. Advanced Therapeutics, 2100138	4.9	1
2	Delivery of Wnt inhibitor WIF1 via engineered polymeric microspheres promotes nerve regeneration after sciatic nerve crush <i>Journal of Tissue Engineering</i> , 2022 , 13, 20417314221087417	7.5	O
1	Monitoring Wound Healing with Topically Applied Optical NanoFlare mRNA Nanosensors Advanced Science, 2022, e2104835	13.6	0