
Qingjun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10494774/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal and bonding properties of epoxy asphalt bond coats. Journal of Thermal Analysis and Calorimetry, 2022, 147, 2013-2025.	3.6	24
2	Microstructure and dynamic mechanical properties epoxy/asphaltene composites. Journal of Thermal Analysis and Calorimetry, 2022, 147, 2209-2219.	3.6	17
3	A critical review on performance and phase separation of thermosetting epoxy asphalt binders and bond coats. Construction and Building Materials, 2022, 326, 126792.	7.2	50
4	Influence of oligomer content on viscosity and dynamic mechanical properties of epoxy asphalt binders. Construction and Building Materials, 2022, 338, 127524.	7.2	18
5	Viscosity uring time behavior, viscoelastic properties, and phase separation of graphene oxide/epoxy asphalt composites. Polymer Composites, 2022, 43, 5454-5464.	4.6	17
6	Performance of epoxy asphalt binder containing warm-mix asphalt additive. International Journal of Pavement Engineering, 2021, 22, 223-232.	4.4	47
7	Laboratory investigation on the microstructure and performance of SBS modified epoxy asphalt binder. Construction and Building Materials, 2021, 270, 121378.	7.2	41
8	Designing Self-Sustainable Icephobic Layer by Introducing a Lubricating Un-Freezable Water Hydrogel from Sodium Polyacrylate on the Polyolefin Surface. Polymers, 2021, 13, 1126.	4.5	1
9	Development of eco-friendly fire-retarded warm-mix epoxy asphalt binders using reactive polymeric flame retardants for road tunnel pavements. Construction and Building Materials, 2021, 284, 122752.	7.2	32
10	Improving toughness of epoxy asphalt binder with reactive epoxidized SBS. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	3.1	20
11	Influence of thermal shock on the performance of B-staged epoxy bond coat for orthotropic steel bridge pavements. Construction and Building Materials, 2021, 294, 123598.	7.2	15
12	Microstructure and performance of epoxy asphalt binders modified by core-shell rubbers containing different core polymers. Construction and Building Materials, 2021, 304, 124689.	7.2	18
13	Toughening epoxy asphalt binder using core-shell rubber nanoparticles. Construction and Building Materials, 2020, 258, 119716.	7.2	36
14	Laboratory evaluation of warm-mix epoxy SBS modified asphalt binders containing Sasobit. Journal of Building Engineering, 2020, 32, 101550.	3.4	24
15	Mechanical and bonding properties of pristine montmorillonite reinforced epoxy asphalt bond coats. Polymer Composites, 2020, 41, 3034-3042.	4.6	25
16	Impact of waste cooking oil on the viscosity, microstructure and mechanical performance of warm-mix epoxy asphalt binder. Construction and Building Materials, 2020, 251, 118994.	7.2	42
17	Laboratory investigation of epoxy asphalt binder modified by brominated SBS. Construction and Building Materials, 2019, 228, 116733.	7.2	32
18	Performance evaluation of warm mix asphalt additive modified epoxy asphalt rubbers. Construction and Building Materials, 2019, 204, 288-295.	7.2	69

Qingjun Wang

#	Article	IF	CITATIONS
19	Sliding and rolling behavior of water droplets on an ordered nanoball matrix fluorocarbon polymer layer under simulated weather conditions. Surface Science, 2018, 675, 91-98.	1.9	5
20	Halogen-free flame retarded cold-mix epoxy asphalt binders: Rheological, thermal and mechanical characterization. Construction and Building Materials, 2018, 186, 863-870.	7.2	48
21	The icephobicity comparison of polysiloxane modified hydrophobic and superhydrophobic surfaces under condensing environments. Applied Surface Science, 2016, 385, 472-480.	6.1	41
22	Wetting transition of the ordered nanoporous matrix layer under impact and static pressure. Applied Surface Science, 2015, 353, 636-642.	6.1	3
23	Influence of different chemical modifications on the icephobic properties of superhydrophobic surfaces in a condensate environment. Journal of Materials Chemistry A, 2015, 3, 4967-4975.	10.3	46
24	A modified captive bubble method for determining advancing and receding contact angles. Applied Surface Science, 2014, 296, 133-139.	6.1	30
25	Superhydrophobic Stability of Nanotube Array Surfaces under Impact and Static Forces. ACS Applied Materials & Interfaces, 2014, 6, 8073-8079.	8.0	45
26	Superhydrophobic surfaces fabricated by spray-coating micelle solutions of comb copolymers. Colloid and Polymer Science, 2013, 291, 1409-1418.	2.1	11
27	Verification of Icephobic/Anti-icing Properties of a Superhydrophobic Surface. ACS Applied Materials & Interfaces, 2013, 5, 3370-3381.	8.0	447
28	Ice-phobic Coatings Based on Silicon-Oil-Infused Polydimethylsiloxane. ACS Applied Materials & Interfaces, 2013, 5, 4053-4062.	8.0	215
29	Water condensation on superhydrophobic aluminum surfaces with different low-surface-energy coatings. Applied Surface Science, 2012, 258, 4063-4068.	6.1	85
30	Superhydrophobicity of Natural and Artificial Surfaces under Controlled Condensation Conditions. ACS Applied Materials & Interfaces, 2011, 3, 1254-1260.	8.0	31
31	Research on the icephobic properties of fluoropolymer-based materials. Applied Surface Science, 2011, 257, 4956-4962.	6.1	136
32	Stability of Superhydrophobicity of Lotus Leaf under Extreme Humidity. Chemistry Letters, 2010, 39, 816-817.	1.3	30
33	In situ investigation of ice formation on surfaces with representative wettability. Applied Surface Science, 2010, 256, 6764-6769.	6.1	123
34	A facile dip-coating process for preparing highly durable superhydrophobic surface with multi-scale structures on paint films. Journal of Colloid and Interface Science, 2009, 337, 531-537.	9.4	96
35	The stability of superhydrophobic surfaces tested by high speed current scouring. Applied Surface Science, 2008, 254, 2911-2916.	6.1	37
36	Stable highly hydrophobic and oleophilic meshes for oil–water separation. Applied Surface Science, 2007, 253, 9054-9060.	6.1	68

#	Article	IF	CITATIONS
37	Fabrication of an optically transparent super-hydrophobic surface via embedding nano-silica. Applied Surface Science, 2006, 253, 2633-2636.	6.1	60
38	Structure and oil-resistant properties of HTPB-based polyurea modified with polysulfide. Journal of Applied Polymer Science, 2003, 89, 2672-2675.	2.6	12