Klavs F Jensen

List of Publications by Citations

Source: https://exaly.com/author-pdf/1049378/klavs-f-jensen-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

40,226 184 105 521 h-index g-index citations papers 6.7 44,934 7.9 550 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
521	(CdSe)ZnS CoreBhell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 9463-9475	3.4	3565
520	Cells on chips. <i>Nature</i> , 2006 , 442, 403-11	50.4	1791
519	Microreaction engineering ls small better?. Chemical Engineering Science, 2001, 56, 293-303	4.4	936
518	Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 7502-19	16.4	752
517	Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. <i>Lab on A Chip</i> , 2006 , 6, 1487-503	7.2	748
516	Full Color Emission from IIIVI Semiconductor Quantum Dot Polymer Composites. <i>Advanced Materials</i> , 2000 , 12, 1102-1105	24	644
515	On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. <i>Science</i> , 2016 , 352, 61-7	33.3	578
514	Synthesis of micro and nanostructures in microfluidic systems. <i>Chemical Society Reviews</i> , 2010 , 39, 1183	3- 30 25	546
513	In vitro and ex vivo strategies for intracellular delivery. <i>Nature</i> , 2016 , 538, 183-192	50.4	489
512	End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 12359-63	16.4	426
511	Microchemical systems for continuous-flow synthesis. <i>Lab on A Chip</i> , 2009 , 9, 2495-507	7.2	421
510	Transport and reaction in microscale segmented gas-liquid flow. Lab on A Chip, 2004, 4, 278-86	7.2	411
509	The role of flow in green chemistry and engineering. <i>Green Chemistry</i> , 2013 , 15, 1456	10	373
508	Synthesis of Luminescent Thin-Film CdSe/ZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated with an Overlayer of ZnSe. <i>Chemistry of Materials</i> , 1996 , 8, 173-180	9.6	373
507	Next-generation optical imaging with short-wave infrared quantum dots. <i>Nature Biomedical Engineering</i> , 2017 , 1,	19	360
506	Micromixing of miscible liquids in segmented gas-liquid flow. <i>Langmuir</i> , 2005 , 21, 1547-55	4	359
505	Microfabricated Multiphase Packed-Bed Reactors: Characterization of Mass Transfer and Reactions. <i>Industrial & Description of Mass Transfer and Reactions. Industrial & Description of Mass Transfer and Reaction of Mass Transfer a</i>	3.9	358

504	Microfluidic synthesis of colloidal silica. <i>Langmuir</i> , 2004 , 20, 8604-11	4	357
503	Multistep continuous-flow microchemical synthesis involving multiple reactions and separations. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 5704-8	16.4	337
502	Prediction of Organic Reaction Outcomes Using Machine Learning. ACS Central Science, 2017, 3, 434-44	3 16.8	325
501	Microfluidic shear devices for quantitative analysis of cell adhesion. <i>Analytical Chemistry</i> , 2004 , 76, 5257	7-68	319
500	Integrated continuous microfluidic liquid-liquid extraction. Lab on A Chip, 2007, 7, 256-63	7.2	314
499	Integrated microreactors for reaction automation: new approaches to reaction development. <i>Annual Review of Analytical Chemistry</i> , 2010 , 3, 19-42	12.5	303
498	A Continuum Model of DC and RF Discharges. IEEE Transactions on Plasma Science, 1986, 14, 78-91	1.3	298
497	A vector-free microfluidic platform for intracellular delivery. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 2082-7	11.5	293
496	Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. <i>Chemical Reviews</i> , 2018 , 118, 7409-7531	68.1	280
495	A robotic platform for flow synthesis of organic compounds informed by AI planning. <i>Science</i> , 2019 , 365,	33.3	271
494	A microfluidic electroporation device for cell lysis. <i>Lab on A Chip</i> , 2005 , 5, 23-9	7.2	256
493	Machine Learning in Computer-Aided Synthesis Planning. <i>Accounts of Chemical Research</i> , 2018 , 51, 1281	1-12.89	255
492	Flow chemistryMicroreaction technology comes of age. AICHE Journal, 2017, 63, 858-869	3.6	249
491	Analyzing Learned Molecular Representations for Property Prediction. <i>Journal of Chemical Information and Modeling</i> , 2019 , 59, 3370-3388	6.1	247
490	A graph-convolutional neural network model for the prediction of chemical reactivity. <i>Chemical Science</i> , 2019 , 10, 370-377	9.4	237
489	Flow-induced deformation of shallow microfluidic channels. <i>Lab on A Chip</i> , 2006 , 6, 500-7	7.2	233
488	A microfabricated gas-liquid segmented flow reactor for high-temperature synthesis: the case of CdSe quantum dots. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 5447-51	16.4	230
487	Micromachined reactors for catalytic partial oxidation reactions. <i>AICHE Journal</i> , 1997 , 43, 3059-3069	3.6	221

486	Mass transport and surface reactions in microfluidic systems. <i>Chemical Engineering Science</i> , 2006 , 61, 1102-1121	4.4	213
485	A Continuous-Flow Microcapillary Reactor for the Preparation of a Size Series of CdSe Nanocrystals. <i>Advanced Materials</i> , 2003 , 15, 1858-1862	24	207
484	Reconfigurable system for automated optimization of diverse chemical reactions. <i>Science</i> , 2018 , 361, 1220-1225	33.3	207
483	Accelerating reactions with microreactors at elevated temperatures and pressures: profiling aminocarbonylation reactions. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 1734-7	16.4	195
482	Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform. <i>Langmuir</i> , 2012 , 28, 7007-13	4	194
481	Overcoming the Challenges of Solid Bridging and Constriction during Pd-Catalyzed CN Bond Formation in Microreactors. <i>Organic Process Research and Development</i> , 2010 , 14, 1347-1357	3.9	194
480	Convolutional Embedding of Attributed Molecular Graphs for Physical Property Prediction. <i>Journal of Chemical Information and Modeling</i> , 2017 , 57, 1757-1772	6.1	191
479	Design and global optimization of high-efficiency thermophotovoltaic systems. <i>Optics Express</i> , 2010 , 18 Suppl 3, A314-34	3.3	189
478	Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy. <i>Journal of Micromechanics and Microengineering</i> , 2001 , 11, 263-269	2	183
477	Insights into the kinetics of semiconductor nanocrystal nucleation and growth. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4479-89	16.4	182
476	Photochemical reactions and on-line UV detection in microfabricated reactors. <i>Lab on A Chip</i> , 2001 , 1, 22-8	7.2	181
475	Palladium-catalyzed amination reactions in flow: overcoming the challenges of clogging via acoustic irradiation. <i>Chemical Science</i> , 2011 , 2, 287-290	9.4	179
474	Complex flow phenomena in MOCVD reactors. <i>Journal of Crystal Growth</i> , 1986 , 77, 108-119	1.6	179
473	An integrated microreactor system for self-optimization of a Heck reaction: from micro- to mesoscale flow systems. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 7076-80	16.4	175
472	Membrane-aerated microbioreactor for high-throughput bioprocessing. <i>Biotechnology and Bioengineering</i> , 2004 , 87, 243-54	4.9	171
471	Design and fabrication of microfluidic devices for multiphase mixing and reaction. <i>Journal of Microelectromechanical Systems</i> , 2002 , 11, 709-717	2.5	171
470	Feedback in Flow for Accelerated Reaction Development. Accounts of Chemical Research, 2016, 49, 178	6 22 63	166
469	Reactive polymer coatings: a first step toward surface engineering of microfluidic devices. <i>Analytical Chemistry</i> , 2003 , 75, 2117-22	7.8	165

(2010-1999)

468	Microchemical systems: Status, challenges, and opportunities. AICHE Journal, 1999, 45, 2051-2054	3.6	164
467	Microfabricated Multiphase Reactors for the Selective Direct Fluorination of Aromatics. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 698-710	3.9	163
466	Tools for chemical synthesis in microsystems. <i>Lab on A Chip</i> , 2014 , 14, 3206-12	7.2	154
465	A reaction-transport model for AlGaN MOVPE growth. <i>Journal of Crystal Growth</i> , 1998 , 195, 733-739	1.6	154
464	Photo-oxidation of polymers used in electroluminescent devices. <i>Synthetic Metals</i> , 1995 , 73, 195-199	3.6	153
463	Flow Phenomena in Chemical Vapor Deposition of Thin Films. <i>Annual Review of Fluid Mechanics</i> , 1991 , 23, 197-232	22	152
462	Reactive Polymer Coatings: A Platform for Patterning Proteins and Mammalian Cells onto a Broad Range of Materials. <i>Langmuir</i> , 2002 , 18, 3632-3638	4	150
461	A fully automated flow-based approach for accelerated peptide synthesis. <i>Nature Chemical Biology</i> , 2017 , 13, 464-466	11.7	148
460	Microreactor-based reaction optimization in organic chemistryglycosylation as a challenge. <i>Chemical Communications</i> , 2005 , 578-80	5.8	147
459	The bifurcation behavior of tubular reactors. <i>Chemical Engineering Science</i> , 1982 , 37, 199-222	4.4	147
458	Three-Dimensional Flow Effects in Silicon CVD in Horizontal Reactors. <i>Journal of the Electrochemical Society</i> , 1988 , 135, 459-471	3.9	146
457	Pro und kontra Strfhungsreaktoren in der Synthese. <i>Angewandte Chemie</i> , 2011 , 123, 7642-7661	3.6	145
456	In-situ encapsulation of quantum dots into polymer microspheres. <i>Langmuir</i> , 2006 , 22, 3782-90	4	142
455	Design and Scaling Up of Microchemical Systems: A Review. <i>Annual Review of Chemical and Biomolecular Engineering</i> , 2017 , 8, 285-305	8.9	141
454	Continuous manufacturing Lihe Green Chemistry promise?. <i>Green Chemistry</i> , 2019 , 21, 3481-3498	10	140
453	Suzuki-Miyaura cross-coupling reactions in flow: multistep synthesis enabled by a microfluidic extraction. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5943-6	16.4	140
452	Density functional theory study of ligand binding on CdSe (0001), (0001), and (1120) single crystal relaxed and reconstructed surfaces: implications for nanocrystalline growth. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 18007-16	3.4	140
451	Design and Packaging of Microreactors for High Pressure and High Temperature Applications. <i>Industrial & Design & Chemistry Research</i> , 2010 , 49, 11310-11320	3.9	139

450	Measurement of residence time distribution in microfluidic systems. <i>Chemical Engineering Science</i> , 2005 , 60, 5729-5737	4.4	138
449	Supercritical Continuous-Microflow Synthesis of Narrow Size Distribution Quantum Dots. <i>Advanced Materials</i> , 2008 , 20, 4830-4834	24	135
448	Continuous dielectrophoretic size-based particle sorting. <i>Analytical Chemistry</i> , 2006 , 78, 5019-25	7.8	135
447	Transport phenomena in vertical reactors for metalorganic vapor phase epitaxy. <i>Journal of Crystal Growth</i> , 1990 , 102, 441-470	1.6	134
446	In situ mass spectroscopy and thermogravimetric studies of GaAs MOCVD gas phase and surface reactions. <i>Journal of Crystal Growth</i> , 1987 , 85, 165-174	1.6	134
445	Development of a Multi-Step Synthesis and Workup Sequence for an Integrated, Continuous Manufacturing Process of a Pharmaceutical. <i>Organic Process Research and Development</i> , 2014 , 18, 402-4	. 69 9	133
444	Membrane-Based, Liquid Diquid Separator with Integrated Pressure Control. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 10802-10808	3.9	132
443	Using Machine Learning To Predict Suitable Conditions for Organic Reactions. <i>ACS Central Science</i> , 2018 , 4, 1465-1476	16.8	131
442	Rapid Determination of Reaction Kinetics with an Automated Microfluidic System. <i>Organic Process Research and Development</i> , 2011 , 15, 398-407	3.9	129
441	Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 5309-14	11.5	128
440	Microfluidics-based assessment of cell deformability. <i>Analytical Chemistry</i> , 2012 , 84, 6438-43	7.8	127
439	Trimethylamine complexes of alane as precursors for the low-pressure chemical vapor deposition of aluminum. <i>Chemistry of Materials</i> , 1989 , 1, 339-343	9.6	126
438	Investigation of high-temperature degradation of platinum thin films with an in situ resistance measurement apparatus. <i>Journal of Microelectromechanical Systems</i> , 1998 , 7, 128-135	2.5	125
437	Mixing and Dispersion in Small-Scale Flow Systems. <i>Organic Process Research and Development</i> , 2012 , 16, 976-981	3.9	124
436	In situ characterization of the oxidative degradation of a polymeric light emitting device. <i>Journal of Applied Physics</i> , 1997 , 81, 3716-3720	2.5	121
435	Microfabricated Multiphase Reactors for the Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 1153-1160	3.9	121
434	CVD in Stagnation Point Flow: An Evaluation of the Classical 1D Treatment. <i>Journal of the Electrochemical Society</i> , 1986 , 133, 961-970	3.9	120
433	Flow Distribution and Ozonolysis in Gas[liquid Multichannel Microreactors. <i>Industrial & amp; Engineering Chemistry Research</i> , 2006 , 45, 8036-8042	3.9	119

432	Multistep microchemical synthesis enabled by microfluidic distillation. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 899-903	16.4	118	
431	Cathodoluminescence and photoluminescence of highly luminescent CdSe/ZnS quantum dot composites. <i>Applied Physics Letters</i> , 1997 , 70, 2132-2134	3.4	118	
430	Development of a multiplexed microbioreactor system for high-throughput bioprocessing. <i>Lab on A Chip</i> , 2005 , 5, 819-26	7.2	118	
429	Aminolysis of Epoxides in a Microreactor System: A Continuous Flow Approach to EAmino Alcohols. <i>Organic Process Research and Development</i> , 2010 , 14, 432-440	3.9	117	
428	Investigation of indium phosphide nanocrystal synthesis using a high-temperature and high-pressure continuous flow microreactor. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 627-3	o ^{16.4}	116	
427	Computer-Assisted Retrosynthesis Based on Molecular Similarity. ACS Central Science, 2017, 3, 1237-12	45 6.8	112	
426	. Journal of Microelectromechanical Systems, 2003 , 12, 600-612	2.5	112	
425	A Teflon microreactor with integrated piezoelectric actuator to handle solid forming reactions. <i>Lab on A Chip</i> , 2011 , 11, 2488-92	7.2	111	
424	Distillation in microchemical systems using capillary forces and segmented flow. <i>Lab on A Chip</i> , 2009 , 9, 1843-9	7.2	111	
423	Fabrication and structural characterization of self-supporting electrolyte membranes for a micro solid-oxide fuel cell. <i>Journal of Materials Research</i> , 2004 , 19, 2604-2615	2.5	111	
422	Automated Multitrajectory Method for Reaction Optimization in a Microfluidic System using Online IR Analysis. <i>Organic Process Research and Development</i> , 2012 , 16, 1409-1415	3.9	110	
421	An Automated Microfluidic System for Online Optimization in Chemical Synthesis. <i>Organic Process Research and Development</i> , 2010 , 14, 1169-1176	3.9	110	
420	Microfabricated packed-bed reactor for phosgene synthesis. AICHE Journal, 2001, 47, 1639-1647	3.6	109	
419	Achieving continuous manufacturing: technologies and approaches for synthesis, workup, and isolation of drug substance. May 20-21, 2014 Continuous Manufacturing Symposium. <i>Journal of Pharmaceutical Sciences</i> , 2015 , 104, 781-91	3.9	108	
418	Complex flow phenomena in vertical MOCVD reactors: Effects on deposition uniformity and interface abruptness. <i>Journal of Crystal Growth</i> , 1987 , 85, 154-164	1.6	106	
417	High-throughput Nuclear Delivery and Rapid Expression of DNA via Mechanical and Electrical Cell-Membrane Disruption. <i>Nature Biomedical Engineering</i> , 2017 , 1,	19	105	
416	Silicon-Based Microchemical Systems: Characteristics and Applications. MRS Bulletin, 2006, 31, 101-107	3.2	105	
415	Scalability of mass transfer in liquid[Iquid flow. <i>Chemical Engineering Science</i> , 2014 , 116, 1-8	4.4	102	

414	Microfluidic Synthesis of Titania Shells on Colloidal Silica. <i>Advanced Materials</i> , 2007 , 19, 2556-2560	24	102
413	A microfabricated device for subcellular organelle sorting. <i>Analytical Chemistry</i> , 2004 , 76, 5705-12	7.8	102
412	Rapid flow-based peptide synthesis. <i>ChemBioChem</i> , 2014 , 15, 713-20	3.8	101
411	"Batch" kinetics in flow: online IR analysis and continuous control. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 470-3	16.4	101
410	Microchemostat-microbial continuous culture in a polymer-based, instrumented microbioreactor. <i>Lab on A Chip</i> , 2006 , 6, 906-13	7.2	101
409	Gas-Phase and Surface Reaction Mechanisms in MOCVD of GaAs with Trimethyl-Gallium and Arsine. <i>Journal of the Electrochemical Society</i> , 1991 , 138, 2426-2439	3.9	100
408	Flow and heat transfer in CVD reactors: Comparison of Raman temperature measurements and finite element model predictions. <i>Journal of Crystal Growth</i> , 1990 , 100, 577-599	1.6	96
407	Estimation of effective transport coefficients in porous solids based on percolation concepts. <i>Chemical Engineering Science</i> , 1985 , 40, 1723-1734	4.4	96
406	Scaled-Out Multilayer GasIliquid Microreactor with Integrated Velocimetry Sensors. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 8997-9013	3.9	94
405	SCScore: Synthetic Complexity Learned from a Reaction Corpus. <i>Journal of Chemical Information and Modeling</i> , 2018 , 58, 252-261	6.1	90
404	A Microfabricated Gaslliquid Segmented Flow Reactor for High-Temperature Synthesis: The Case of CdSe Quantum Dots. <i>Angewandte Chemie</i> , 2005 , 117, 5583-5587	3.6	88
403	Microfluidic electrochemistry for single-electron transfer redox-neutral reactions. <i>Science</i> , 2020 , 368, 1352-1357	33.3	87
402	Suzuki-Miyaura cross-coupling optimization enabled by automated feedback. <i>Reaction Chemistry and Engineering</i> , 2016 , 1, 658-666	4.9	87
401	Microfabricated Differential Reactor for Heterogeneous Gas Phase Catalyst Testing. <i>Journal of Catalysis</i> , 2002 , 209, 401-412	7.3	85
400	Percolation concepts in modelling of gas-solid reactions Application to char gasification in the kinetic regime. <i>Chemical Engineering Science</i> , 1986 , 41, 333-343	4.4	84
399	In situ mass spectroscopy studies of the decomposition of organometallic arsenic compounds in the presence of Ga(CH3)3 and Ga(C2H5)3. <i>Journal of Crystal Growth</i> , 1988 , 93, 134-142	1.6	83
398	Development of an automated microfluidic reaction platform for multidimensional screening: reaction discovery employing bicyclo[3.2.1]octanoid scaffolds. <i>Journal of Organic Chemistry</i> , 2009 , 74, 6169-80	4.2	82
397	Estimation of the molecular weight distribution in batch polymerization. AICHE Journal, 1988, 34, 1341	-13 6 3	82

396	Characterization of Indium Phosphide Quantum Dot Growth Intermediates Using MALDI-TOF Mass Spectrometry. <i>Journal of the American Chemical Society</i> , 2016 , 138, 13469-13472	16.4	81	
395	A Rapid Total Synthesis of Ciprofloxacin Hydrochloride in Continuous Flow. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8870-8873	16.4	80	
394	Multiscale modeling of chemical vapor deposition. <i>Journal of Applied Physics</i> , 1998 , 83, 524-530	2.5	80	
393	Detailed models of the MOVPE process. <i>Journal of Crystal Growth</i> , 1991 , 107, 1-11	1.6	80	
392	A New Method toward Microengineered Surfaces Based on Reactive Coating. <i>Angewandte Chemie - International Edition</i> , 2001 , 40, 3166-3169	16.4	79	
391	Transition Metals for Selective Chemical Vapor Deposition of Parylene-Based Polymers. <i>Chemistry of Materials</i> , 2000 , 12, 1305-1313	9.6	79	
390	Mass Transport and Reactions in the Tube-in-Tube Reactor. <i>Organic Process Research and Development</i> , 2013 , 17, 927-933	3.9	78	
389	Low Pressure CVD of Silicon Nitride. <i>Journal of the Electrochemical Society</i> , 1987 , 134, 1777-1785	3.9	78	
388	Synthesis of control structures by singular value analysis: Dynamic measures of sensitivity and interaction. <i>AICHE Journal</i> , 1985 , 31, 427-439	3.6	78	
387	Live-cell protein labelling with nanometre precision by cell squeezing. <i>Nature Communications</i> , 2016 , 7, 10372	17.4	77	
386	A well-mixed, polymer-based microbioreactor with integrated optical measurements. <i>Biotechnology and Bioengineering</i> , 2006 , 93, 286-96	4.9	76	
385	Autonomous Discovery in the Chemical Sciences Part I: Progress. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 22858-22893	16.4	75	
384	Cell stimulus and lysis in a microfluidic device with segmented gas-liquid flow. <i>Analytical Chemistry</i> , 2005 , 77, 3629-36	7.8	74	
383	Kinetic and Scale-Up Investigations of Epoxide Aminolysis in Microreactors at High Temperatures and Pressures. <i>Organic Process Research and Development</i> , 2011 , 15, 131-139	3.9	73	
382	Electromigration of aluminum cathodes in polymer-based electroluminescent devices. <i>Applied Physics Letters</i> , 1996 , 69, 3941-3943	3.4	72	
381	Facile Soft-Templated Synthesis of High-Surface Area and Highly Porous Carbon Nitrides. <i>Chemistry of Materials</i> , 2017 , 29, 1496-1506	9.6	71	
380	An Automated Continuous-Flow Platform for the Estimation of Multistep Reaction Kinetics. <i>Organic Process Research and Development</i> , 2012 , 16, 1770-1782	3.9	71	
379	Micro-reaction engineering applications of reaction engineering to processing of electronic and photonic materials. <i>Chemical Engineering Science</i> , 1987 , 42, 923-958	4.4	70	

378	On-line molecular weight distribution estimation and control in batch polymerization. <i>AICHE Journal</i> , 1994 , 40, 445-462	3.6	69
377	Analysis of MOCVD of GaAs on patterned substrates. <i>Journal of Crystal Growth</i> , 1991 , 114, 581-592	1.6	69
376	Microfluidic based single cell microinjection. <i>Lab on A Chip</i> , 2008 , 8, 1258-61	7.2	68
375	Properties of the CdSe(0001), (0001), and (1120) single crystal surfaces: Relaxation, reconstruction, and adatom and admolecule adsorption. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 19320-8	3.4	68
374	Electroluminescent Materials with Feature Sizes as Small as 5 th Using Elastomeric Membranes as Masks for Dry Lift-Off. <i>Advanced Materials</i> , 1999 , 11, 546-552	24	68
373	Photoredox Iridium Mickel Dual-Catalyzed Decarboxylative Arylation Cross-Coupling: From Batch to Continuous Flow via Self-Optimizing Segmented Flow Reactor. <i>Organic Process Research and Development</i> , 2018 , 22, 542-550	3.9	67
372	Direct oxidative amidation of aromatic aldehydes using aqueous hydrogen peroxide in continuous flow microreactor systems. <i>Green Chemistry</i> , 2012 , 14, 1471	10	67
371	Nonendocytic delivery of functional engineered nanoparticles into the cytoplasm of live cells using a novel, high-throughput microfluidic device. <i>Nano Letters</i> , 2012 , 12, 6322-7	11.5	66
370	Simulation of carbon doping of GaAs during MOVPE. Journal of Crystal Growth, 1992, 124, 483-492	1.6	64
369	GasIliquid Flow and Mass Transfer in an Advanced-Flow Reactor. <i>Industrial & amp; Engineering Chemistry Research</i> , 2013 , 52, 8996-9010	3.9	63
368	Electrospray organometallic chemical vapor deposition novel technique for preparation of IIIVI quantum dot composites. <i>Applied Physics Letters</i> , 1994 , 65, 2795-2797	3.4	63
367	Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2013 , 31, 011802	1.3	62
366	Surfactant-enhanced liquid-liquid extraction in microfluidic channels with inline electric-field enhanced coalescence. <i>Lab on A Chip</i> , 2005 , 5, 531-5	7.2	62
365	An Evaluation of Density Functional Theory and ab Initio Predictions for Bridge-Bonded Aluminum Compounds. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 2613-2623	2.8	62
364	Autonomous Discovery in the Chemical Sciences Part II: Outlook. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 23414-23436	16.4	62
363	Oscillatory Microprocessor for Growth and in Situ Characterization of Semiconductor Nanocrystals. <i>Chemistry of Materials</i> , 2015 , 27, 6131-6138	9.6	61
362	Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines. <i>Scientific Reports</i> , 2015 , 5, 10276	4.9	61
361	Hydrodynamics of Liquid[liquid Dispersion in an Advanced-Flow Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 16251-16262	3.9	61

(2020-2014)

360	Application of Continuous Crystallization in an Integrated Continuous Pharmaceutical Pilot Plant. <i>Crystal Growth and Design</i> , 2014 , 14, 2148-2157	3.5	60	
359	The Unexpected Influence of Precursor Conversion Rate in the Synthesis of III-V Quantum Dots. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 14299-303	16.4	60	
358	Sample dispersion for segmented flow in microchannels with rectangular cross section. <i>Analytical Chemistry</i> , 2008 , 80, 1558-67	7.8	60	
357	Simulation of micromachined chemical reactors for heterogeneous partial oxidation reactions. <i>Chemical Engineering Science</i> , 2000 , 55, 3-13	4.4	60	
356	Analysis of Multicomponent LPCVD Processes: Deposition of Pure and In Situ Doped Poly-Si. <i>Journal of the Electrochemical Society</i> , 1985 , 132, 448-454	3.9	60	
355	Simulations and analysis of multiphase transport and reaction in segmented flow microreactors. <i>Chemical Engineering Science</i> , 2017 , 169, 106-116	4.4	59	
354	Advanced Continuous Flow Platform for On-Demand Pharmaceutical Manufacturing. <i>Chemistry - A European Journal</i> , 2018 , 24, 2776-2784	4.8	59	
353	Percolation concepts in modelling of gas-solid reactions (I). Application to char gasification in the diffusion regime. <i>Chemical Engineering Science</i> , 1986 , 41, 345-354	4.4	59	
352	BigSMILES: A Structurally-Based Line Notation for Describing Macromolecules. <i>ACS Central Science</i> , 2019 , 5, 1523-1531	16.8	58	
351	Simultaneous solvent screening and reaction optimization in microliter slugs. <i>Chemical Communications</i> , 2015 , 51, 13290-3	5.8	58	
350	Shape-controlled continuous synthesis of metal nanostructures. <i>Nanoscale</i> , 2016 , 8, 7534-43	7.7	57	
349	Heterogeneous catalysis with continuous flow microreactors. <i>Catalysis Science and Technology</i> , 2012 , 2, 2134	5.5	57	
348	Silicon Micromixers with Infrared Detection for Studies of Liquid-Phase Reactions. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 2351-2358	3.9	57	
347	End-to-End Continuous Manufacturing of Pharmaceuticals: Integrated Synthesis, Purification, and Final Dosage Formation. <i>Angewandte Chemie</i> , 2013 , 125, 12585-12589	3.6	56	
346	Microfluidic preparative free-flow isoelectric focusing: system optimization for protein complex separation. <i>Analytical Chemistry</i> , 2010 , 82, 1253-60	7.8	56	
345	Rice-Ramsperger-Kassel-Marcus theoretical prediction of high-pressure Arrhenius parameters by nonlinear regression: application to silane and disilane decomposition. <i>The Journal of Physical Chemistry</i> , 1987 , 91, 5732-5739		54	
344	A segmented flow platform for on-demand medicinal chemistry and compound synthesis in oscillating droplets. <i>Chemical Communications</i> , 2017 , 53, 6649-6652	5.8	53	
343	Current and Future Roles of Artificial Intelligence in Medicinal Chemistry Synthesis. <i>Journal of Medicinal Chemistry</i> , 2020 , 63, 8667-8682	8.3	53	

342	SuzukiMiyaura Cross-Coupling Reactions in Flow: Multistep Synthesis Enabled by a Microfluidic Extraction. <i>Angewandte Chemie</i> , 2011 , 123, 6065-6068	3.6	53
341	Use of Microcontact Printing for Generating Selectively Grown Films of Poly(p-phenylene vinylene) and Parylenes Prepared by Chemical Vapor Deposition. <i>Langmuir</i> , 2000 , 16, 8495-8500	4	52
340	Transport phenomena and chemical reaction issues in OMVPE of compound semiconductors. Journal of Crystal Growth, 1989 , 98, 148-166	1.6	52
339	Bifurcation phenomena in CSTR dynamics: A system with extraneous thermal capacitance. <i>Chemical Engineering Science</i> , 1986 , 41, 1497-1523	4.4	52
338	Modeling of pyrolytic laser-assisted chemical vapor deposition: Mass transfer and kinetic effects influencing the shape of the deposit. <i>Journal of Applied Physics</i> , 1988 , 63, 198-206	2.5	52
337	Effect of Trace Water on the Growth of Indium Phosphide Quantum Dots. <i>Chemistry of Materials</i> , 2015 , 27, 5058-5063	9.6	51
336	Oscillatory multiphase flow strategy for chemistry and biology. Lab on A Chip, 2016, 16, 2775-84	7.2	51
335	Multiscale modeling of thin film growth. <i>Current Opinion in Solid State and Materials Science</i> , 1998 , 3, 562-569	12	50
334	Cyclotrigallazane, [H2GaNH2]3. Its preparation, structure, and conversion to cubic gallium nitride at 150.degree.C. <i>Chemistry of Materials</i> , 1990 , 2, 342-343	9.6	50
333	CARS in situ diagnostics in MOVPE: The thermal decomposition of AsH3 and PH3. <i>Journal of Crystal Growth</i> , 1988 , 93, 151-158	1.6	50
332	Surface reactions of dimethylaminoarsine during MOMBE of GaAs. <i>Journal of Crystal Growth</i> , 1992 , 124, 16-22	1.6	49
331	A pH-Sensitive Laser-Induced Fluorescence Technique To Monitor Mass Transfer in Multiphase Flows in Microfluidic Devices. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 8999-9006	3.9	48
330	Microreactor System for High-Pressure Continuous Flow Homogeneous Catalysis Measurements. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 11013-11022	3.9	47
329	Nonlinear model reduction strategies for rapid thermal processing systems. <i>IEEE Transactions on Semiconductor Manufacturing</i> , 1998 , 11, 266-275	2.6	47
328	Sensitive power compensated scanning calorimeter for analysis of phase transformations in small samples. <i>Review of Scientific Instruments</i> , 2005 , 76, 065104	1.7	47
327	Continuous-flow precipitation of hydroxyapatite in ultrasonic microsystems. <i>Chemical Engineering Journal</i> , 2013 , 215-216, 979-987	14.7	46
326	Teflon-coated silicon microreactors: impact on segmented liquid-liquid multiphase flows. <i>Langmuir</i> , 2011 , 27, 6519-27	4	46
325	Micro free-flow IEF enhanced by active cooling and functionalized gels. <i>Electrophoresis</i> , 2006 , 27, 4960	-93.6	46

(2018-2002)

324	Microfabricated cross-flow chemical reactor for catalyst testing. <i>Sensors and Actuators B: Chemical</i> , 2002 , 82, 297-306	8.5	46	
323	Multistage Microfluidic Platform for the Continuous Synthesis of III-V Core/Shell Quantum Dots. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 10915-10918	16.4	46	
322	Plasma membrane recovery kinetics of a microfluidic intracellular delivery platform. <i>Integrative Biology (United Kingdom)</i> , 2014 , 6, 470-5	3.7	45	
321	Design issues for membrane-based, gas phase microchemical systems. <i>Chemical Engineering Science</i> , 2000 , 55, 3065-3075	4.4	45	
320	A miniature CSTR cascade for continuous flow of reactions containing solids. <i>Reaction Chemistry and Engineering</i> , 2016 , 1, 501-507	4.9	45	
319	Nanoengineering a library of metallic nanostructures using a single microfluidic reactor. <i>Nanoscale</i> , 2016 , 8, 15288-95	7.7	45	
318	RDChiral: An RDKit Wrapper for Handling Stereochemistry in Retrosynthetic Template Extraction and Application. <i>Journal of Chemical Information and Modeling</i> , 2019 , 59, 2529-2537	6.1	43	
317	An Integrated Microreactor System for Self-Optimization of a Heck Reaction: From Micro- to Mesoscale Flow Systems. <i>Angewandte Chemie</i> , 2010 , 122, 7230-7234	3.6	43	
316	Combined experimental and modeling studies of laser-assisted chemical vapor deposition of copper from copper(I)-hexafluoroacetylacetonate trimethylvinylsilane. <i>Journal of Applied Physics</i> , 1994 , 75, 2240-2250	2.5	43	
315	High quality epitaxial ZnSe and the relationship between electron mobility and photoluminescence characteristics. <i>Applied Physics Letters</i> , 1989 , 54, 353-355	3.4	43	
314	One-step continuous synthesis of biocompatible gold nanorods for optical coherence tomography. <i>Chemical Communications</i> , 2012 , 48, 6654-6	5.8	42	
313	Flow-through comb electroporation device for delivery of macromolecules. <i>Analytical Chemistry</i> , 2013 , 85, 1637-41	7.8	42	
312	Synthesis and Kinetics of Highly Energetic Intermediates by Micromixers: Direct Multistep Synthesis of Sodium Nitrotetrazolate. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 4132-4	4 <i>1</i> 339	42	
311	Computational chemistry predictions of reaction processes in organometallic vapor phase epitaxy. <i>Progress in Crystal Growth and Characterization of Materials</i> , 1997 , 35, 117-149	3.5	42	
310	Solder-based chip-to-tube and chip-to-chip packaging for microfluidic devices. <i>Lab on A Chip</i> , 2007 , 7, 1309-14	7.2	42	
309	Infrared spectroscopy for chemically specific sensing in silicon-based microreactors. <i>Analytical Chemistry</i> , 2004 , 76, 6476-83	7.8	42	
308	Computational Chemistry Predictions of Kinetics and Major Reaction Pathways for Germane Gas-Phase Reactions. <i>Journal of the Electrochemical Society</i> , 1996 , 143, 2646-2654	3.9	42	
307	Optimum catalyst selection over continuous and discrete process variables with a single droplet microfluidic reaction platform. <i>Reaction Chemistry and Engineering</i> , 2018 , 3, 301-311	4.9	41	

306	Efficient kinetic experiments in continuous flow microreactors. <i>Reaction Chemistry and Engineering</i> , 2018 , 3, 94-101	4.9	41
305	Molecular Engineering of Trifunctional Supported Catalysts for the Aerobic Oxidation of Alcohols. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11044-8	16.4	41
304	Increasing Productivity of Microreactors for Fast Gaslliquid Reactions: The Case of Direct Fluorination of Toluene. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 1428-1434	3.9	41
303	Characteristics of GaSb growth using various gallium and antimony precursors. <i>Journal of Crystal Growth</i> , 1997 , 170, 55-60	1.6	41
302	Selective Growth of Poly(p-phenylene vinylene) Prepared by Chemical Vapor Deposition. <i>Advanced Materials</i> , 1999 , 11, 814-820	24	41
301	Gas-Phase Decomposition Reactions of Tris(dimethylamino)phosphine, -Arsine, and -Stibine Reagents. <i>Chemistry of Materials</i> , 1995 , 7, 507-516	9.6	41
300	Thermophoresis of solid particles in horizontal chemical vapor deposition reactors. <i>Journal of Crystal Growth</i> , 1990 , 102, 743-761	1.6	41
299	Design of Multistage Counter-Current Liquid Liquid Extraction for Small-Scale Applications. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 4095-4103	3.9	40
298	Scale-Up Investigation of the Continuous Phase-Transfer-Catalyzed Hypochlorite Oxidation of Alcohols and Aldehydes. <i>Organic Process Research and Development</i> , 2014 , 18, 1476-1481	3.9	40
297	Temperature programmed desorption investigations of hydrogen and ammonia reactions on GaN. <i>Surface Science</i> , 1997 , 381, L581-L588	1.8	40
296	OpenFOAM Computational Fluid Dynamic Simulations of Two-Phase Flow and Mass Transfer in an Advanced-Flow Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 6649-6659	3.9	39
295	Synthesis, assembly and reaction of a nanocatalyst in microfluidic systems: a general platform. <i>Lab on A Chip</i> , 2012 , 12, 4080-4	7.2	39
294	Chemical vapor deposition of thin polymer films used in polymer-based light emitting diodes. <i>Advanced Materials</i> , 1997 , 9, 490-493	24	39
293	Palladium-Based Micromembranes for Hydrogen Separation: Device Performance and Chemical Stability. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 7083-7091	3.9	39
292	In-situ reflectance monitoring of GaSb substrate oxide desorption. <i>Journal of Crystal Growth</i> , 2001 , 225, 420-425	1.6	39
291	MOVPE of AlN and GaN by using novel precursors. <i>Journal of Crystal Growth</i> , 1991 , 107, 376-380	1.6	39
290	Gas phase and surface reactions in Si doping of GaAs by silanes. <i>Journal of Crystal Growth</i> , 1988 , 93, 594	4- 6.6 1	39
289	Ex vivo cytosolic delivery of functional macromolecules to immune cells. <i>PLoS ONE</i> , 2015 , 10, e0118803	3.7	38

(2013-2005)

288	Gene expression analysis of Escherichia coli grown in miniaturized bioreactor platforms for high-throughput analysis of growth and genomic data. <i>Applied Microbiology and Biotechnology</i> , 2005 , 68, 518-32	5.7	38	
287	Infrared Spectroscopic Study of Decomposition of Ti(N(CH[sub 3])[sub 2])[sub 4]. <i>Journal of the Electrochemical Society</i> , 2001 , 148, G178	3.9	38	
286	An integrated multiphase flow sensor for microchannels. <i>Experiments in Fluids</i> , 2004 , 36, 819-832	2.5	37	
285	A Combustion-Based MEMS Thermoelectric Power Generator 2001 , 30-33		37	
284	Catalytic hydrogenation of N-4-nitrophenyl nicotinamide in a micro-packed bed reactor. <i>Green Chemistry</i> , 2018 , 20, 886-893	10	36	
283	Preparation of IIIVI quantum dot composites by electrospray organometallic chemical vapor deposition. <i>Journal of Crystal Growth</i> , 1994 , 145, 714-720	1.6	36	
282	A Continuous Stirred-Tank Reactor (CSTR) Cascade for Handling Solid-Containing Photochemical Reactions. <i>Organic Process Research and Development</i> , 2019 , 23, 2699-2706	3.9	35	
281	Chemical vapor deposition of poly (p-phenylene vinylene) based light emitting diodes with low turn-on voltages. <i>Applied Physics Letters</i> , 1997 , 71, 2091-2093	3.4	35	
280	Miniaturization and integration of photoacoustic detection. <i>Journal of Applied Physics</i> , 2002 , 92, 1555-7	1526.3	35	
279	Poly(p-phenylene vinylene) Prepared by Chemical Vapor Deposition: Influence of Monomer Selection and Reaction Conditions on Film Composition and Luminescence Properties. <i>Macromolecules</i> , 1998 , 31, 6789-6793	5.5	35	
278	The effect of patterns on thermal stress during rapid thermal processing of silicon wafers. <i>IEEE Transactions on Semiconductor Manufacturing</i> , 1998 , 11, 99-107	2.6	35	
277	Chemical Vapor Deposition. <i>Advances in Chemistry Series</i> , 1989 , 199-263		35	
276	Biphasic Catalytic Hydrogen Peroxide Oxidation of Alcohols in Flow: Scale-up and Extraction. Organic Process Research and Development, 2016 , 20, 1677-1685	3.9	35	
275	Hydrodynamics of gasilquid flow in micropacked beds: Pressure drop, liquid holdup, and two-phase model. <i>AICHE Journal</i> , 2017 , 63, 4694-4704	3.6	34	
274	Isotropic etching of silicon in fluorine gas for MEMS micromachining. <i>Journal of Micromechanics and Microengineering</i> , 2007 , 17, 384-392	2	34	
273	Cascaded free-flow isoelectric focusing for improved focusing speed and resolution. <i>Analytical Chemistry</i> , 2007 , 79, 9364-71	7.8	34	
272	Oscillatory three-phase flow reactor for studies of bi-phasic catalytic reactions. <i>Chemical Communications</i> , 2015 , 51, 8916-9	5.8	33	
271	Process intensification and optimization for hydroxyapatite nanoparticles production. <i>Chemical Engineering Science</i> , 2013 , 100, 352-359	4.4	33	

270	Material-Efficient Microfluidic Platform for Exploratory Studies of Visible-Light Photoredox Catalysis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 9847-9850	16.4	33
269	Multistep synthesis of amides from alcohols and amines in continuous flow microreactor systems using oxygen and urea hydrogen peroxide as oxidants. <i>Green Chemistry</i> , 2013 , 15, 1538	10	33
268	Development of a Photochemical Microfluidics Platform. <i>Journal of Flow Chemistry</i> , 2011 , 1, 53-55	3.3	33
267	Synthesis of CdSe quantum dotInS matrix thin films via electrospray organometallic chemical vapor deposition. <i>Journal of Crystal Growth</i> , 1998 , 195, 564-568	1.6	33
266	Simulation of flow and growth phenomena in a close-spaced reactor. <i>Journal of Crystal Growth</i> , 1998 , 195, 725-732	1.6	33
265	Analysis of Transition Regime Flows in Low Pressure Chemical Vapor Deposition Reactors Using the Direct Simulation Monte Carlo Method. <i>Journal of the Electrochemical Society</i> , 1992 , 139, 2264-2273	3.9	33
264	MOCVD in inverted stagnation point flow. Journal of Crystal Growth, 1986, 77, 120-127	1.6	33
263	Continuous N-Hydroxyphthalimide (NHPI)-Mediated Electrochemical Aerobic Oxidation of Benzylic C-H Bonds. <i>Chemistry - A European Journal</i> , 2018 , 24, 10260	4.8	33
262	Multistage extraction platform for highly efficient and fully continuous purification of nanoparticles. <i>Nanoscale</i> , 2017 , 9, 7703-7707	7.7	32
261	In situ measurement of bioluminescence and fluorescence in an integrated microbioreactor. <i>Biotechnology and Bioengineering</i> , 2006 , 93, 40-7	4.9	32
260	High-Purity Hydrogen Generation in a Microfabricated 23 wt % AgPd Membrane Device Integrated with 8:1 LaNi0.95Co0.05O3/Al2O3 Catalyst. <i>Advanced Materials</i> , 2006 , 18, 1701-1704	24	32
259	Estimation of the Arrhenius parameters for silane .dblarw. silylene + hydrogen and .DELTA.Hfo(SiH2) by a nonlinear regression analysis of the forward and reverse reaction rate data. <i>The Journal of Physical Chemistry</i> , 1991 , 95, 145-154		32
258	Microfluidic Continuous Seeded Crystallization: Extraction of Growth Kinetics and Impact of Impurity on Morphology. <i>Crystal Growth and Design</i> , 2012 , 12, 6260-6266	3.5	31
257	Continuous flow metal-free oxidation of picolines using air. <i>Chemical Communications</i> , 2012 , 48, 2086-8	5.8	31
256	Differential gene expression profiles and real-time measurements of growth parameters in Saccharomyces cerevisiae grown in microliter-scale bioreactors equipped with internal stirring. <i>Biotechnology Progress</i> , 2006 , 22, 710-7	2.8	31
255	Tritertiarybutylaluminum as an organometallic source for epitaxial growth of AlGaSb. <i>Applied Physics Letters</i> , 1995 , 67, 1384-1386	3.4	31
254	Simulation of Rarefied Gas Transport and Profile Evolution in Nonplanar Substrate Chemical Vapor Deposition. <i>Journal of the Electrochemical Society</i> , 1994 , 141, 2545-2551	3.9	31
253	Gas phase and surface reactions in the MOCVD of GaAs from triethylgallium, trimethylgallium, and tertiarybutylarsine. <i>Journal of Crystal Growth</i> , 1988 , 93, 20-28	1.6	31

252	Batch Kinetics in Flow: Online IR Analysis and Continuous Control. Angewandte Chemie, 2014, 126, 480-4	48.3 6	30	
251	Miniaturization and integration of photoacoustic detection with a microfabricated chemical reactor system. <i>Journal of Microelectromechanical Systems</i> , 2001 , 10, 232-237	2.5	30	
250	The Effect of Multilayer Patterns on Temperature Uniformity during Rapid Thermal Processing. Journal of the Electrochemical Society, 1996 , 143, 1142-1151	3.9	30	
249	Estimation of Arrhenius parameters for the 1,1 elimination of hydrogen from disilane and the role of chemically activated disilane in silane pyrolysis. <i>The Journal of Physical Chemistry</i> , 1992 , 96, 7695-770	3	30	
248	One IlickIto controlled bifunctional supported catalysts for the Cu/TEMPO-catalyzed aerobic oxidation of alcohols. <i>RSC Advances</i> , 2016 , 6, 36602-36605	3.7	30	
247	Continuous Nanofiltration and Recycle of an Asymmetric Ketone Hydrogenation Catalyst. <i>ACS Catalysis</i> , 2015 , 5, 2615-2622	13.1	29	
246	Automated measurements of gas-liquid mass transfer in micropacked bed reactors. <i>AICHE Journal</i> , 2018 , 64, 564-570	3.6	29	
245	Rapid WolffRishner reductions in a silicon carbide microreactor. <i>Green Chemistry</i> , 2014 , 16, 176-180	10	29	
244	Microfluidic production of perfluorocarbon-alginate core-shell microparticles for ultrasound therapeutic applications. <i>Langmuir</i> , 2014 , 30, 12391-9	4	29	
243	Chemical/surface mechanistic considerations in the design of novel precursors for metalorganic molecular beam epitaxy. <i>Journal of Crystal Growth</i> , 1994 , 136, 118-126	1.6	29	
242	Determination of the Arrhenius parameters for disilane .dblarw. silane + silicon dihydride and .DELTA.H.degree.f (SiH2) by RRKM analysis for forward and reverse reaction rate data. <i>The Journal of Physical Chemistry</i> , 1992 , 96, 7683-7695		29	
241	Percolation concepts in modelling of gas-solid reactions-III. Application to sulphation of calcined limestone. <i>Chemical Engineering Science</i> , 1987 , 42, 565-574	4.4	29	
240	Portable Thermoelectric Power Generator Based on a Microfabricated Silicon Combustor with Low Resistance to Flow. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 8468-8475	3.9	28	
239	A chemical mechanism for in situ boron doping during silicon chemical vapor deposition. <i>Thin Solid Films</i> , 2000 , 365, 231-241	2.2	28	
238	Modeling of metal thin film growth: Linking angstrom-scale molecular dynamics results to micron-scale film topographies. <i>Physical Review B</i> , 2000 , 62, 2869-2878	3.3	28	
237	A microscopic model for catalytic surfaces Catalytic wires and gauzes. <i>Chemical Engineering Science</i> , 1980 , 35, 2439-2457	4.4	28	
236	In-Situ Microfluidic Study of Biphasic Nanocrystal Ligand-Exchange Reactions Using an Oscillatory Flow Reactor. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 16333-16337	16.4	27	
235	Compact and Integrated Approach for Advanced End-to-End Production, Purification, and Aqueous Formulation of Lidocaine Hydrochloride. <i>Organic Process Research and Development</i> , 2016 , 20, 1347-135	3 ^{.9}	27	

234	Continuous synthesis of palladium nanorods in oxidative segmented flow. AICHE Journal, 2016, 62, 373	-3,810	27
233	Investigation of Indium Phosphide Nanocrystal Synthesis Using a High-Temperature and High-Pressure Continuous Flow Microreactor. <i>Angewandte Chemie</i> , 2011 , 123, 653-656	3.6	27
232	A Systematic Approach to Simulating Rapid Thermal Processing Systems. <i>Journal of the Electrochemical Society</i> , 1996 , 143, 2035-2043	3.9	26
231	n-AlGaSb and GaSb/AlGaSb double-heterostructure lasers grown by organometallic vapor phase epitaxy. <i>Applied Physics Letters</i> , 1996 , 68, 400-402	3.4	26
230	Kinetics analysis and automated online screening of aminocarbonylation of aryl halides in flow. <i>Reaction Chemistry and Engineering</i> , 2016 , 1, 272-279	4.9	25
229	Use of a Droplet Platform To Optimize Pd-Catalyzed CN Coupling Reactions Promoted by Organic Bases. <i>Organic Process Research and Development</i> , 2019 , 23, 1594-1601	3.9	25
228	Dissociation reactions of CuI(hfac)L compounds relevant to the chemical vapor deposition of copper. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 2818	3.6	25
227	Blue Electroluminescent Copolymers by Parylene-Based Chemical Vapor Deposition. <i>Macromolecules</i> , 2000 , 33, 5336-5339	5.5	25
226	MOVPE of ZnSe using organometallic allyl selenium precursors. <i>Journal of Crystal Growth</i> , 1991 , 107, 390-395	1.6	25
225	A computational study of gas-phase and surface reactions in deposition and etching of GaAs and AlAs in the presence of HCl. <i>Journal of Crystal Growth</i> , 2004 , 268, 76-95	1.6	24
224	In situ concentration monitoring in a vertical OMVPE reactor by fiber-optics-based Fourier transform infrared spectroscopy. <i>Journal of Crystal Growth</i> , 1996 , 169, 443-449	1.6	24
223	Computation of transition and molecular diffusivities in fibrous media. AICHE Journal, 1992, 38, 56-66	3.6	24
222	Models for catalytic pore plugging: application to hydrodemetallation. <i>Chemical Engineering Science</i> , 1989 , 44, 649-663	4.4	24
221	Multiphase Oscillatory Flow Strategy for in Situ Measurement and Screening of Partition Coefficients. <i>Analytical Chemistry</i> , 2015 , 87, 11130-6	7.8	23
220	Automated in Situ Measurement of Gas Solubility in Liquids with a Simple Tube-in-Tube Reactor. <i>Analytical Chemistry</i> , 2017 , 89, 8524-8530	7.8	23
219	Sphingomyelinase-induced phase transformations: causing morphology switches and multiple-time-domain ceramide generation in model raft membranes. <i>Langmuir</i> , 2010 , 26, 344-56	4	23
218	Synthesis of Ge nanocrystals embedded in a Si host matrix. <i>Journal of Applied Physics</i> , 1994 , 76, 8201-82	. 0 .35	23
217	SAXS investigation of model carbon pore structure and its change with gasification. <i>Carbon</i> , 1991 , 29, 271-282	10.4	23

(2020-2018)

216	Mechanistic Insights and Controlled Synthesis of Radioluminescent ZnSe Quantum Dots Using a Microfluidic Reactor. <i>Chemistry of Materials</i> , 2018 , 30, 8562-8570	9.6	22
215	Characterization and modeling of multiphase flow in structured microreactors: a post microreactor case study. <i>Lab on A Chip</i> , 2015 , 15, 3232-41	7.2	21
214	Olefin Autoxidation in Flow. Industrial & Engineering Chemistry Research, 2014, 53, 601-608	3.9	21
213	A new view of ignition, extinction, and oscillations on supported catalyst surfaces. <i>Chemical Engineering Science</i> , 1980 , 35, 241-248	4.4	21
212	Sulfur dioxide oxidation on supported molten V2O5\$z.sbnd;K2S2O7 catalyst Influence of liquid diffusion resistance. <i>Journal of Catalysis</i> , 1976 , 45, 216-230	7.3	21
211	Regio-selectivity prediction with a machine-learned reaction representation and on-the-fly quantum mechanical descriptors. <i>Chemical Science</i> , 2020 , 12, 2198-2208	9.4	21
210	Continuous purification of active pharmaceutical ingredients utilizing polymer membrane surface wettability. <i>Chemical Communications</i> , 2017 , 54, 70-73	5.8	21
209	Cell squeezing as a robust, microfluidic intracellular delivery platform. <i>Journal of Visualized Experiments</i> , 2013 , e50980	1.6	20
208	A Microfluidic System for the Continuous Recycling of Unmodified Homogeneous Palladium Catalysts through Liquid/Liquid Phase Separation. <i>ChemCatChem</i> , 2013 , 5, 1729-1733	5.2	20
207	Temperature variations in electrical and photoluminescence properties of ZnSe grown by MOCVD. Journal of Crystal Growth, 1990 , 104, 291-296	1.6	20
206	Toward Machine Learning-Enhanced High-Throughput Experimentation. <i>Trends in Chemistry</i> , 2021 , 3, 120-132	14.8	20
205	Continuous Production of Five Active Pharmaceutical Ingredients in Flexible Plug-and-Play Modules: A Demonstration Campaign. <i>Organic Process Research and Development</i> , 2020 , 24, 2183-2196	3.9	19
204	Thermoformed fluoropolymer tubing for in-line mixing. <i>Reaction Chemistry and Engineering</i> , 2018 , 3, 707-713	4.9	19
203	Continuous Nanofiltration and Recycle of a Metathesis Catalyst in a Microflow System. <i>ChemCatChem</i> , 2014 , 6, 3004-3011	5.2	19
202	Thermal Chemical Vapor Deposition 1991 , 283-368		19
201	Carbon incorporation in ZnSe grown by metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 1989 , 55, 463-465	3.4	19
200	New Precursors for the Organometallic Chemical Vapor Deposition of Aluminum Nitride. <i>Materials Research Society Symposia Proceedings</i> , 1988 , 131, 447		19
199	Iterative experimental design based on active machine learning reduces the experimental burden associated with reaction screening. <i>Reaction Chemistry and Engineering</i> , 2020 , 5, 1963-1972	4.9	19

198	Direct Observation of Early-Stage Quantum Dot Growth Mechanisms with High-Temperature Ab Initio Molecular Dynamics. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 2472-2483	3.8	18
197	Mass transfer characteristics of ozonolysis in microreactors and advanced-flow reactors. <i>Journal of Flow Chemistry</i> , 2015 , 5, 160-165	3.3	18
196	Microfluidic jet injection for delivering macromolecules into cells. <i>Journal of Micromechanics and Microengineering</i> , 2013 , 23,	2	18
195	Gas diffusion in random-fiber substrates. <i>AICHE Journal</i> , 1989 , 35, 1942-1952	3.6	18
194	Investigation of carbon incorporation in znse: Effects on morphology, electrical, and photoluminescence properties. <i>Journal of Electronic Materials</i> , 1990 , 19, 453-462	1.9	18
193	The Open Reaction Database. <i>Journal of the American Chemical Society</i> , 2021 , 143, 18820-18826	16.4	18
192	A Size-Selective Intracellular Delivery Platform. <i>Small</i> , 2016 , 12, 5873-5881	11	18
191	A Rapid Total Synthesis of Ciprofloxacin Hydrochloride in Continuous Flow. <i>Angewandte Chemie</i> , 2017 , 129, 8996-8999	3.6	17
190	Scalable thin-layer membrane reactor for heterogeneous and homogeneous catalytic gas[]quid reactions. <i>Green Chemistry</i> , 2018 , 20, 3867-3874	10	17
189	The Unexpected Influence of Precursor Conversion Rate in the Synthesis of IIIIV Quantum Dots. <i>Angewandte Chemie</i> , 2015 , 127, 14507-14511	3.6	17
188	Design, Execution, and Analysis of Time-Varying Experiments for Model Discrimination and Parameter Estimation in Microreactors. <i>Organic Process Research and Development</i> , 2014 , 18, 1461-1467	7 ^{3.9}	17
187	Engineering the synthesis of silica-gold nano-urchin particles using continuous synthesis. <i>Nanoscale</i> , 2014 , 6, 13228-35	7.7	17
186	Structural and enzymatic investigation of the Sulfolobus solfataricus uridylate kinase shows competitive UTP inhibition and the lack of GTP stimulation. <i>Biochemistry</i> , 2007 , 46, 2745-57	3.2	17
185	Combined Experimental and Modeling Study of Spatial Effects in Plasma Etching: CF 4 / O 2 Etching of Silicon. <i>Journal of the Electrochemical Society</i> , 1990 , 137, 1062-1078	3.9	17
184	Microfluidic Assisted Synthesis of Hybrid Au P d Dumbbell-like Nanostructures: Sequential Addition of Reagents and Ultrasonic Radiation. <i>Crystal Growth and Design</i> , 2017 , 17, 2700-2710	3.5	16
183	Ligand-Mediated Nanocrystal Growth. <i>Langmuir</i> , 2018 , 34, 3307-3315	4	16
182	Microfluidic preparative free-flow isoelectric focusing in a triangular channel: system development and characterization. <i>Electrophoresis</i> , 2010 , 31, 1606-14	3.6	16
181	In situ monitoring of GaSb, GaInAsSb, and AlGaAsSb. <i>Journal of Crystal Growth</i> , 1998 , 195, 181-186	1.6	16

180	Pyrolytic laser assisted chemical vapor deposition of Al from dimethylethylamine-alane: Characterization and a new two-step writing process. <i>Applied Physics Letters</i> , 1994 , 64, 425-427	3.4	16	
179	Limitations to the omvpe growth of Hg compounds due to hydrodynamic effects. <i>Materials Letters</i> , 1988 , 6, 123-128	3.3	16	
178	A Multifunctional Microfluidic Platform for High-Throughput Experimentation of Electroorganic Chemistry. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 20890-20894	16.4	16	
177	Multitask prediction of site selectivity in aromatic CH functionalization reactions. <i>Reaction Chemistry and Engineering</i> , 2020 , 5, 896-902	4.9	16	
176	Liquid II quid extraction in flow of the radioisotope titanium-45 for positron emission tomography applications. <i>Reaction Chemistry and Engineering</i> , 2018 , 3, 898-904	4.9	16	
175	OpenFOAM Computational Fluid Dynamic Simulations of Single-Phase Flows in an Advanced-Flow Reactor. <i>Industrial & Dynamic Simulatry Research</i> , 2015 , 54, 7543-7553	3.9	15	
174	Data Augmentation and Pretraining for Template-Based Retrosynthetic Prediction in Computer-Aided Synthesis Planning. <i>Journal of Chemical Information and Modeling</i> , 2020 , 60, 3398-3407	6.1	15	
173	High-performance miniature CSTR for biphasic CII bond-forming reactions. <i>Chemical Engineering Journal</i> , 2018 , 335, 936-944	14.7	15	
172	SOI-Supported Microdevice for Hydrogen Purification Using PalladiumBilver Membranes. <i>Journal of Microelectromechanical Systems</i> , 2010 , 19, 402-409	2.5	15	
171	The effect of surface roughness on the radiative properties of patterned silicon wafers. <i>IEEE Transactions on Semiconductor Manufacturing</i> , 1998 , 11, 607-614	2.6	15	
170	Integrated Microreactor System for Gas-Phase Catalytic Reactions. 1. Scale-up Microreactor Design and Fabrication. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 8292-8305	3.9	15	
169	Design of a silicon-based microscale trickle-bed system for singlet-oxygen production. <i>AICHE Journal</i> , 2008 , 54, 2441-2455	3.6	15	
168	Catalyst surface characterization in microfabricated reactors using pulse chemisorption. <i>Chemical Communications</i> , 2004 , 2610-1	5.8	15	
167	A multiscale study of the selective MOVPE of AlxGa1NAs in the presence of HCl. <i>Journal of Crystal Growth</i> , 2003 , 248, 411-416	1.6	15	
166	Monitoring of gas-phase species in metalorganic vapor phase epitaxy by fiber-optics based Fourier transform infrared spectroscopy. <i>Journal of Crystal Growth</i> , 1994 , 145, 28-35	1.6	15	
165	Monte Carlo simulations of very low pressure chemical vapor deposition. <i>Journal of Computer-Aided Materials Design</i> , 1993 , 1, 3-26		15	
164	Ready, Set, Flow! Automated Continuous Synthesis and Optimization. <i>Trends in Chemistry</i> , 2021 , 3, 373-3	3<u>8</u>6 8	15	
163	Direct fluorination of carbon monoxide in microreactors. <i>Journal of Fluorine Chemistry</i> , 2012 , 142, 19-23	2.1	14	

162	Effects of C incorporation on the luminescence properties of ZnSe grown by metalorganic chemical vapor deposition. <i>Journal of Crystal Growth</i> , 1994 , 138, 338-345	1.6	14
161	Continuous flow SuzukiMiyaura couplings in water under micellar conditions in a CSTR cascade catalyzed by Fe/ppm Pd nanoparticles. <i>Green Chemistry</i> , 2020 , 22, 3441-3444	10	13
160	High-Speed Vapor Transport Deposition of Perovskite Thin Films. <i>ACS Applied Materials & ACS Applied & ACS ACS Applied & ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	13
159	Fourier transform infrared studies of polyimide and poly(methyl-methacrylate) surfaces during downstream microwave plasma etching. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1991 , 9, 2948-2962	2.9	13
158	A finite element solutionof three-dimensional mixed convection gas flows in horizontal chnnels using preconditioned iterative metrix methods. <i>International Journal for Numerical Methods in Fluids</i> , 1992 , 14, 817-841	1.9	13
157	The importance of free radical recombination reactions in CF4/O2 plasma etching of silicon. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1990 , 8, 1648-1653	2.9	13
156	Application of Specific Deuterium Labeling and Nuclear Magnetic Resonance Spectroscopy to the Study of the Mechanism of Pyrolysis of tert- Butylarsine and tert-Butylarsine-d2. <i>Chemistry of Materials</i> , 1990 , 2, 499-505	9.6	13
155	Kinetic model for metal-organic chemical vapor deposition of gallium arsenide with organometallic-arsenic precursors. <i>Chemistry of Materials</i> , 1990 , 2, 39-49	9.6	13
154	A microscopic model for catalyst surfaces II. Chemical Engineering Science, 1982, 37, 1387-1410	4.4	13
153	Continuous Thermal Oxidation of Alkenes with Nitrous Oxide in a Packed Bed Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 4166-4173	3.9	12
152	A clock reaction based on molybdenum blue. Journal of Physical Chemistry A, 2013, 117, 4343-51	2.8	12
151	Integrated Microreactor System for Gas-Phase Catalytic Reactions. 3. Microreactor System Design and System Automation. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 8319-8335	3.9	12
150	A Monte Carlo Simulation Study of Radiation Heat Transfer in the Multiwafer LPCVD Reactor. Journal of the Electrochemical Society, 1994 , 141, 496-501	3.9	12
149	Effect of operating conditions and precursors on optoelectronic properties of OMVPE grown ZnSe. <i>Journal of Crystal Growth</i> , 1990 , 101, 111-117	1.6	12
148	Evaluation of changeover control policies by singular value analysis Effects of scaling. <i>AICHE Journal</i> , 1985 , 31, 135-146	3.6	12
147	Towards efficient discovery of green synthetic pathways with Monte Carlo tree search and reinforcement learning. <i>Chemical Science</i> , 2020 , 11, 10959-10972	9.4	12
146	Realization of a salt bridge-free microfluidic reference electrode. <i>Lab on A Chip</i> , 2012 , 12, 1431-3	7.2	11
145	14 Microreactors for measuring catalyst activity and determining reaction kinetics. <i>Studies in Surface Science and Catalysis</i> , 2003 , 145, 97-102	1.8	11

144	The roles of supersaturation, terrace width, and impurities on the formation of macrosteps on crystal surfaces using the terrace-ledge-kink model. <i>Surface Science</i> , 1992 , 262, 359-370	1.8	11	
143	A new reactor system for MOCVD of ZaSe: Modelling and experimental results for growth from dimethylzinc and diethylselenide. <i>Journal of Crystal Growth</i> , 1990 , 104, 629-640	1.6	11	
142	Modelling of reactors for plasma processing I. Silicon etching by CF4 in a radial flow reactor. <i>Chemical Engineering Science</i> , 1986 , 41, 653-660	4.4	11	
141	Palladium Membrane Microreactors 2000 , 267-276		11	
140	Portable, Constriction-Expansion Blood Plasma Separation and Polymerization-Based Malaria Detection. <i>Analytical Chemistry</i> , 2016 , 88, 7627-32	7.8	11	
139	Characterization and Modeling of the Operating Curves of Membrane Microseparators. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 12184-12191	3.9	10	
138	Investigation of Petasis and Ugi reactions in series in an automated microreactor system. <i>RSC Advances</i> , 2014 , 4, 63627-63631	3.7	10	
137	Directed growth of poly(isobenzofuran) films by chemical vapor deposition on patterned self-assembled monolayers as templates. <i>Langmuir</i> , 2007 , 23, 2483-91	4	10	
136	Integrated Microreactor System for Gas-Phase Catalytic Reactions. 2. Microreactor Packaging and Testing. <i>Industrial & Discourse amp; Engineering Chemistry Research</i> , 2007 , 46, 8306-8318	3.9	10	
135	Systematic Study of Surface Chemistry and Comprehensive Two-Dimensional Tertiary Current Distribution Model for Copper Electrochemical Deposition. <i>Journal of the Electrochemical Society</i> , 2006 , 153, C761	3.9	10	
134	Chemisorption and decomposition of tris(dimethylamino) phosphine on GaAs(100). <i>Surface Science</i> , 1995 , 339, 310-322	1.8	10	
133	Low pressure OMVPE of ZnSe with hydrogen selenide and dimethylzinc-triethylamine. <i>Journal of Electronic Materials</i> , 1993 , 22, 509-514	1.9	10	
132	Small angle X-ray scattering investigations of pore structure changes during coal gasification. <i>Fuel</i> , 1990 , 69, 88-96	7.1	10	
131	Formation of electric triple layers by interdiffusion of two electrolytes. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1975 , 71, 1805-1811		10	
130	Novel Liquid Phase Microreactors for Safe Production of Hazardous Specialty Chemicals 2000 , 171-180		10	
129	Accessing multidimensional mixing via 3D printing and showerhead micromixer design. <i>AICHE Journal</i> , 2020 , 66, e16873	3.6	10	
128	Evaluating and clustering retrosynthesis pathways with learned strategy. <i>Chemical Science</i> , 2020 , 12, 1469-1478	9.4	10	
127	Multistage Microfluidic Platform for the Continuous Synthesis of IIIIV Core/Shell Quantum Dots. <i>Angewandte Chemie</i> , 2018 , 130, 11081-11084	3.6	10	

126	High throughput synthesis of uniform biocompatible polymer beads with high quantum dot loading using microfluidic jet-mode breakup. <i>Langmuir</i> , 2014 , 30, 2216-22	4	9
125	Material-Efficient Microfluidic Platform for Exploratory Studies of Visible-Light Photoredox Catalysis. <i>Angewandte Chemie</i> , 2017 , 129, 9979-9982	3.6	9
124	Simulation of Rapid Thermal Processing Equipment and Processes. <i>Materials Research Society Symposia Proceedings</i> , 1993 , 303, 197		9
123	Study of silicon incorporation from SiH4 in GaAs layers grown by metalorganic vapor phase epitaxy using tertiarybutylarsine. <i>Journal of Crystal Growth</i> , 1994 , 145, 397-402	1.6	9
122	New allyl selenide and trialkylphosphine selenide precursors for metalorganic vapor phase epitaxy of ZnSe. <i>Journal of Crystal Growth</i> , 1994 , 145, 530-536	1.6	9
121	Ftir Studies Of Organometallic Surface Chemistry Relevant To Atomic Layer Epitaxy <i>Materials Research Society Symposia Proceedings</i> , 1991 , 222, 81		9
120	Models and Mechanisms of III-V Compound Semiconductor Growth by Movpe. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 145, 107		9
119	Microchemical Systems for Direct Fluorination of Aromatics 2001 , 60-67		9
118	Continuous Multistage Synthesis and Functionalization of Sub-100 nm Silica Nanoparticles in 3D-Printed Continuous Stirred-Tank Reactor Cascades. <i>ACS Applied Materials & Description</i> , 12, 6699-6706	9.5	9
117	An automated flow platform for accurate determination of gasIlquidBolid reaction kinetics. <i>Reaction Chemistry and Engineering</i> , 2020 , 5, 1751-1758	4.9	9
116	Adding Crystals To Minimize Clogging in Continuous Flow Synthesis. <i>Crystal Growth and Design</i> , 2019 , 19, 98-105	3.5	9
115	Flow Toolkit for Measuring Gas Diffusivity in Liquids. <i>Analytical Chemistry</i> , 2019 , 91, 4004-4009	7.8	8
114	Optimization of Grignard Addition to Esters: Kinetic and Mechanistic Study of Model Phthalide Using Flow Chemistry. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 4859-4866	3.9	8
113	Molecular Engineering of Trifunctional Supported Catalysts for the Aerobic Oxidation of Alcohols. <i>Angewandte Chemie</i> , 2016 , 128, 11210-11214	3.6	8
112	Modeling of the formation kinetics and size distribution evolution of IIIVI quantum dots. <i>Reaction Chemistry and Engineering</i> , 2017 , 2, 567-576	4.9	8
111	Electrode Placement and Fluid Flow Rates in Microfluidic Electrochemical Devices. <i>Journal of the Electrochemical Society</i> , 2012 , 159, H853-H856	3.9	8
110	The Potential Effect of Multilayer Patterns on Temperature Uniformity During Rapid Thermal Processing. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 387, 21		8
109	Interpreting scattering from random porous solids: A model of fully penetrable spherical voids. Journal of Colloid and Interface Science, 1990 , 135, 132-146	9.3	8

108	Reduction of Dispersion in Ultrasonically-Enhanced Micropacked Beds. <i>Industrial & amp; Engineering Chemistry Research</i> , 2018 , 57, 122-128	3.9	8
107	Revealing the Formation Mechanism of Alloyed Pd-Ru Nanoparticles: A Conversion Measurement Approach Utilizing a Microflow Reactor. <i>Langmuir</i> , 2019 , 35, 2236-2243	4	7
106	Automation in Microreactor Systems 2013 , 81-100		7
105	A MEMS Singlet Oxygen Generator B art II: Experimental Exploration of the Performance Space. <i>Journal of Microelectromechanical Systems</i> , 2007 , 16, 1492-1505	2.5	7
104	Synthesis and Characterization of Poly(isobenzofuran) Films by Chemical Vapor Deposition. <i>Macromolecules</i> , 2006 , 39, 4400-4410	5.5	7
103	Design of a MEMS-based microchemical oxygen-iodine laser (/spl mu/COIL) system. <i>IEEE Journal of Quantum Electronics</i> , 2004 , 40, 1041-1055	2	7
102	Gas-Phase Reaction Pathways of Aluminum Organometallic Compounds with Dimethylaluminum Hydride and Alane as Model Systems. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 7881-7891	2.8	7
101	Monte Carlo Simulation of Radiative Heat Transfer in Rapid Thermal Processing (RTP) Systems. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 342, 425		7
100	Multiplicities and periodic behavior in laser direct-write metallization. <i>Chemical Engineering Science</i> , 1989 , 44, 1879-1891	4.4	7
99	In-Situ Ftir and Mass Spectrometric Studies of Gallium Arsenide Metalorganic Chemical Vapor Deposition: Trimethyl Gallium and Tertiary-Butyl Arsine on GaAs(100). <i>Materials Research Society Symposia Proceedings</i> , 1990 , 204, 53		7
98	Microwave plasma generation of arsine from hydrogen and solid arsenic. <i>Applied Physics Letters</i> , 1990 , 57, 2543-2545	3.4	7
97	Modeling of catalytic char gasification. Industrial & Engineering Chemistry Fundamentals, 1984, 23, 223-	229	7
96	Analysis and simulation of multiphase hydrodynamics in capillary microseparators. <i>Lab on A Chip</i> , 2019 , 19, 706-715	7.2	6
95	Continuous, on-demand generation and separation of diphenylphosphoryl azide. <i>Tetrahedron</i> , 2018 , 74, 3137-3142	2.4	6
94	Two-dimensional solvent-mediated phase transformation in lipid membranes induced by sphingomyelinase. <i>Langmuir</i> , 2011 , 27, 10050-60	4	6
93	Structure and Morphology of Poly(isobenzofuran) Films Grown by Hot-Filament Chemical Vapor Deposition. <i>Chemistry of Materials</i> , 2006 , 18, 6339-6344	9.6	6
92	Disproportionation of dimethylalane on aluminum surfaces. Part I. Experimental studies. <i>Surface Science</i> , 2001 , 488, 286-302	1.8	6
91	Decomposition of allylselenium sources in the metalorganic chemical vapor deposition of zinc selenide. <i>Chemistry of Materials</i> , 1993 , 5, 305-310	9.6	6

90	On the origin of return flows in horizontal chemical vapor deposition reactors. <i>Journal of Crystal Growth</i> , 1993 , 132, 483-490	1.6	6
89	A Kinetic Model for Metalorganic Chemical Vapor Deposition of GaAs from Trimethylgallium and Arsine. <i>Materials Research Society Symposia Proceedings</i> , 1988 , 131, 117		6
88	Integrated Gas Phase Microreactors 1998 , 463-468		6
87	Determination of fast gasIlquid reaction kinetics in flow. <i>Reaction Chemistry and Engineering</i> , 2020 , 5, 51-57	4.9	6
86	Characterization of reaction enthalpy and kinetics in a microscale flow platform. <i>Reaction Chemistry and Engineering</i> , 2020 , 5, 2115-2122	4.9	6
85	On-Demand Continuous Manufacturing of Ciprofloxacin in Portable Plug-and-Play Factories: Development of a Highly Efficient Synthesis for Ciprofloxacin. <i>Organic Process Research and Development</i> , 2021 , 25, 1524-1533	3.9	6
84	In-Situ Microfluidic Study of Biphasic Nanocrystal Ligand-Exchange Reactions Using an Oscillatory Flow Reactor. <i>Angewandte Chemie</i> , 2017 , 129, 16551-16555	3.6	5
83	A MEMS Singlet Oxygen Generator P art I: Device Fabrication and Proof of Concept Demonstration. <i>Journal of Microelectromechanical Systems</i> , 2007 , 16, 1482-1491	2.5	5
82	Mikrostrukturierung von Oberflühen durch reaktive Polymerbeschichtungen. <i>Angewandte Chemie</i> , 2001 , 113, 3273-3276	3.6	5
81	Gas-Phase and Surface Decomposition of Tris-Dimethylamino Arsenic. <i>Materials Research Society Symposia Proceedings</i> , 1993 , 334, 169		5
80	Laser Assisted Chemical Vapor Deposition of Cu from a New Cu Organometallic Complex. <i>Materials Research Society Symposia Proceedings</i> , 1991 , 236, 97		5
79	Rice-Ramsperger-Kassel-Marcus theoretical prediction of high-pressure Arrhenius parameters by nonlinear regression. <i>The Journal of Physical Chemistry</i> , 1987 , 91, 5726-5732		5
78	Development of Methods for On-Line Chemical Detection with Liquid-Phase Microchemical Reactors Using Conventional and Unconventional Techniques 2000 , 155-158		5
77	Autonome Entdeckung in den chemischen Wissenschaften, Teil I: Fortschritt. <i>Angewandte Chemie</i> , 2020 , 132, 23054-23091	3.6	5
76	Low oxygen and carbon incorporation in AIGaAs using tritertiarybutylaluminum in organometallic vapor phase epitaxy. <i>Journal of Electronic Materials</i> , 1996 , 25, 771-774	1.9	4
75	OMVPE of Compound Semiconductors 1991 , 369-442		4
74	MOCVD of Wide Bandgap III-V Semiconductors by using Novel Precursors. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 162, 605		4
73	Ftir and Xps Studies of Polyimide/Metal Interface Formation. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 153, 285		4

72	Theoretical and Computational Problems in Modeling Glow Discharges. <i>Materials Research Society Symposia Proceedings</i> , 1986 , 68, 219		4
71	Photoredox Iridium Nickel Dual Catalyzed Cross-Electrophile Coupling: From a Batch to a Continuous Stirred-Tank Reactor via an Automated Segmented Flow Reactor. <i>Organic Process Research and Development</i> , 2021 , 25, 2323-2330	3.9	4
70	Expansion of Microreactor Capabilities through Improved Thermal Management and Catalyst Deposition 2000 , 197-206		4
69	Identifying the roles of acidBase sites in formation pathways of tolualdehydes from acetaldehyde over MgO-based catalysts. <i>Catalysis Science and Technology</i> , 2020 , 10, 536-548	5.5	4
68	Combining retrosynthesis and mixed-integer optimization for minimizing the chemical inventory needed to realize a WHO essential medicines list. <i>Reaction Chemistry and Engineering</i> , 2020 , 5, 367-376	4.9	3
67	Ozonolysis of quinoline and quinoline derivatives in a Corning low flow reactor. <i>Reaction Chemistry and Engineering</i> , 2017 , 2, 696-702	4.9	3
66	Silicon-Based Microreactors. ACS Symposium Series, 2005, 2-22	0.4	3
65	Disproportionation of dimethylalane on aluminum surfaces. Part II. Quantum chemistry studies. <i>Surface Science</i> , 2001 , 488, 303-324	1.8	3
64	Designing Reduced-Order Models for Rapid Thermal Processing Systems. <i>Journal of the Electrochemical Society</i> , 1998 , 145, 3974-3981	3.9	3
63	tert-Butyl(trifluoromethyl)tellurium: a novel organometallic chemical vapor deposition source for zinc telluride. <i>Chemistry of Materials</i> , 1993 , 5, 1321-1326	9.6	3
62	Monte Carlo Simulation of Optical Temperature Sensors in RTP Systems. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 387, 143		3
61	Application of percolation theory concepts to the analysis of gas-solid reactions. <i>Solid State Ionics</i> , 1989 , 32-33, 833-842	3.3	3
60	New Chemical Routes to Metal Nitrides. <i>Materials Research Society Symposia Proceedings</i> , 1990 , 180, 1017		3
59	Rice-Ramsperger-Kassel-Marcus theoretical prediction of high-pressure Arrhenius parameters by nonlinear regression: application to silane and disilane decomposition [Erratum to document cited in CA107(20):184462J]. <i>The Journal of Physical Chemistry</i> , 1988 , 92, 4254-4254		3
58	Miniaturization and Integration of Photoacoustic Detection with a Microfabricated Chemical Reactor System 2000 , 49-52		3
57	Direct Optimization across Computer-Generated Reaction Networks Balances Materials Use and Feasibility of Synthesis Plans for Molecule Libraries. <i>Journal of Chemical Information and Modeling</i> , 2021 , 61, 493-504	6.1	3
56	A high-temperature continuous stirred-tank reactor cascade for the multistep synthesis of InP/ZnS quantum dots. <i>Reaction Chemistry and Engineering</i> , 2021 , 6, 459-464	4.9	3
55	Electroluminescent Materials with Feature Sizes as Small as 5 th Using Elastomeric Membranes as Masks for Dry Lift-Off 1999 , 11, 546		3

54	Preparation of Sodium Nitrotetrazolate Using Microreactor Technology 2005,		2
53	The Effect of Multilayer Patterns on Thermal Stress During Rapid Thermal Processing. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 429, 43		2
52	Laser Assisted CVD of Aluminum from a Novel Liquid Alane Precursor. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 282, 173		2
51	Microelectronics Processing. <i>Advances in Chemistry Series</i> , 1989 , 1-33		2
50	A Model for Chemical Vapor Infiltration of Fibrous Substrates. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 168, 67		2
49	Growth of Compound Semiconductors and Superlattices by Organometallic Chemical Vapor Deposition. <i>ACS Symposium Series</i> , 1987 , 353-375	0.4	2
48	On-Line Estimation of Molecular Weight Distributions in Methyl Methacrylate Polymerization 1986,		2
47	A Novel Cross-Flow Microreactor for Kinetic Studies of Catalytic Processes 2001 , 414-423		2
46	Kinetic Modeling of the Gas Phase Decomposition of Germane by Computational Chemistry Techniques. <i>European Physical Journal Special Topics</i> , 1995 , 05, C5-71-C5-77		2
45	A Multifunctional Microfluidic Platform for High-Throughput Experimentation of Electroorganic Chemistry. <i>Angewandte Chemie</i> , 2020 , 132, 21076-21080	3.6	2
44	Integrated Microreactor System for Gas Phase Reactions363-406		2
43	Generative models for molecular discovery: Recent advances and challenges. Wiley Interdisciplinary Reviews: Computational Molecular Science,	7.9	2
42	Development of a Versatile Modular Flow Chemistry Benchtop System. <i>Organic Process Research and Development</i> , 2020 , 24, 2105-2112	3.9	1
41	Intracellular Delivery of Biomolecules by Mechanical Deformation 2016 , 143-176		1
40	Nested potassium hydroxide etching and protective coatings for silicon-based microreactors. Journal of Micromechanics and Microengineering, 2014 , 24, 035011	2	1
39	Evaluation of nucleation activation energy in metal CVD processes. <i>Korean Journal of Chemical Engineering</i> , 1997 , 14, 129-135	2.8	1
38	. IEEE Transactions on Plasma Science, 1995 , 23, 780-787	1.3	1
37	Modeling of transport and film growth over patterned substrates 1993 ,		1

36	Infrared spectroscopic determination of substitutional carbon in MOVPE grown films of GaAs. <i>Journal of Crystal Growth</i> , 1991 , 107, 248-253	1.6	1
35	Chemistry at Polyimide-Metal Interfaces: In Situ FTIR Studies of Polymer Curing Processes and Thermal Stability. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 282, 581		1
34	MOCVD of GaN Using Diethylgalliumazide and Ammonia. <i>Materials Research Society Symposia Proceedings</i> , 1990 , 204, 101		1
33	Analysis of the Physical and Chemical Factors Determining Compositional Variations in the MOCVD Growth of Indium Gallium Arsenide. <i>Materials Research Society Symposia Proceedings</i> , 1990 , 204, 207		1
32	Trimethylamine Gallane as a Precursor to Cubic Gallium Nitride and Gallium Arsenide. Metal Hydride Chemical Vapor Deposition. <i>Materials Research Society Symposia Proceedings</i> , 1990 , 204, 83		1
31	Optically induced bifurcations in laser direct-write metallization. <i>Chemical Engineering Science</i> , 1990 , 45, 2511-2518	4.4	1
30	Modelling of Pyrolytic Laser Direct-Writing from Thin Metalorganic Films. <i>Materials Research Society Symposia Proceedings</i> , 1988 , 129, 107		1
29	Effects of the Selenium Precursor on the Growth of ZnSe by Metalorganic Chemical Vapor Deposition. <i>Materials Research Society Symposia Proceedings</i> , 1988 , 131, 63		1
28	Modeling of Chemical Vapor Deposition Reactors for the Fabrication of Microelectronic Devices. <i>ACS Symposium Series</i> , 1984 , 197-213	0.4	1
27	Machine learned prediction of reaction template applicability for data-driven retrosynthetic predictions of energetic materials 2020 ,		1
26	Gas-Liquid Flows in Microchemical Systems 2002 , 353-355		1
25	Device Level Integration to form a Parallel Microfluidic Reactor System 2001 , 661-663		1
24	Dispersion in coiled tubular reactors: A CFD and experimental analysis on the effect of pitch. <i>Chemical Engineering Science</i> , 2021 , 233, 116393	4.4	1
23	Design of dynamic trajectories for efficient and data-rich exploration of flow reaction design spaces. <i>Reaction Chemistry and Engineering</i> ,	4.9	1
22	Autonome Entdeckung in den chemischen Wissenschaften, Teil II: Ausblick. <i>Angewandte Chemie</i> , 2020 , 132, 23620-23643	3.6	О
21	Design and operation of an enhanced pervaporation device with static mixers. AICHE Journal,e17455	3.6	Ο
20	Nanocrystal synthesis, fluidic sample dilution and direct extraction of single emission linewidths in continuous flow. <i>Lab on A Chip</i> , 2020 , 20, 1975-1980	7.2	
19	Micro Reaction Technology in Organic Synthesis. Von Charlotte Wiles und Paul Watts <i>Angewandte Chemie</i> , 2012 , 124, 1548-1549	3.6	

18	Mikroreaktoren zur Synthese und Reaktionsoptimierung. <i>Nachrichten Aus Der Chemie</i> , 2005 , 53, 628-63	320.1
17	Computational Investigation of Selective MOVPE of AlXGa1NAs in Presence of HCl. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 696, 1	
16	Computational Investigation of Selective MOVPE of AlxGa1-xAs in Presence of HCl. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 701, 341	
15	Nonlinear Model Reduction Strategies for Rapid Thermal Processing Systems. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 429, 57	
14	Fiber optics based in-situ FTIR monitoring of organometallic chemical vapor deposition of compound semiconductors 1993 , 2069, 132	
13	The Potential Effect of Multilayer Patterns on Temperature Uniformity During Rapid Thermal Processing. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 389, 293	
12	Analysis of TPD Spectra on Semiconductor Surfaces by Monte Carlo Simulations. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 399, 109	
11	19 Chemical Engineering in the Processing of Electronic and Optical Materials: A Discussion. <i>Advances in Chemical Engineering</i> , 1991 , 16, 395-412	0.6
10	Monte Carlo Simulations of Film Profile Evolution During Nonplanar CVD Processes. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 280, 169	
9	Characterization of Fluorinated Polyimide Films. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 264, 263	
8	FTIR and XPS Studies of Polyimide/Metal Interface Formation. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 154, 329	
7	FTIR Investigations of Plasma Modified Polymer Surfaces and Their Interfaces with Plasma Deposited Tungsten. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 165, 239	
6	Thermocapillary Effects in Laser Direct-Write Metallization. <i>Materials Research Society Symposia Proceedings</i> , 1990 , 201, 495	
5	Comments on chemical vapor deposition of silicon under reduced pressure in hot-wall reactors. <i>Chemical Engineering Science</i> , 1988 , 43, 983	4-4
4	Gas Phase and Surface Reactions in Mocvd of GaAs from Triethylgallium, Trimethylgallium, and Organometallic Arsenic Precursors. <i>Materials Research Society Symposia Proceedings</i> , 1988 , 131, 103	
3	Photochemical Reactions and Online Product Detection in Microfabricated Reactors 2001 , 175-184	
2	Towards Integrated Microsystems for Chemical Synthesis 2002 , 642-645	
1	Functionalized Parylene Coatings for Microfluidic Applications 2002 , 443-445	