Paul Tregoning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1049355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitigation of thermal noise in GRACE accelerometer observations. Advances in Space Research, 2022, 69, 386-401.	1.2	4
2	ANU GRACE Data Analysis: Orbit Modeling, Regularization and Interâ€satellite Range Acceleration Observations. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	8
3	ANU GRACE Data Analysis: Characteristics and Benefits of Using Irregularly Shaped Mascons. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	7
4	Thank You to Our 2020 Peer Reviewers. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021896.	1.4	0
5	Plain Language Summary Required for Submission to Journal of Geophysical Research: Solid Earth. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022351.	1.4	2
6	GRACE gravitational measurements of tsunamis after the 2004, 2010, and 2011 great earthquakes. Journal of Geodesy, 2020, 94, 1.	1.6	17
7	Thank You to Our 2019 Reviewers. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019781.	1.4	0
8	Forecasting dryland vegetation condition months in advance through satellite data assimilation. Nature Communications, 2019, 10, 469.	5.8	42
9	Global joint assimilation of GRACE and SMOS for improved estimation of root-zone soil moisture and vegetation response. Hydrology and Earth System Sciences, 2019, 23, 1067-1081.	1.9	34
10	Thank You to Our 2018 Peer Reviewers. Journal of Geophysical Research: Solid Earth, 2019, 124, 3242-3253.	1.4	0
11	Wedge geometry, frictional properties and interseismic coupling of the Java megathrust. Tectonophysics, 2018, 734-735, 89-95.	0.9	4
12	Reply to Comment by W. R. Peltier, D. F. Argus, and R. Drummond on "An Assessment of the ICE6G_C (VM5a) Glacial Isostatic Adjustment Model― Journal of Geophysical Research: Solid Earth, 2018, 123, 2029-2032.	1.4	9
13	A statistical fracture model for Antarctic ice shelves and glaciers. Cryosphere, 2018, 12, 3187-3213.	1.5	9
14	Multitechnique Assessment of the Interannual to Multidecadal Variability in Steric Sea Levels: A Comparative Analysis of Climate Mode Fingerprints. Journal of Climate, 2018, 31, 7583-7597.	1.2	6
15	A directional model of tropospheric horizontal gradients in Global Positioning System and its application for particular weather scenarios. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4401-4425.	1.2	18
16	Improved water balance component estimates through joint assimilation of GRACE water storage and SMOS soil moisture retrievals. Water Resources Research, 2017, 53, 1820-1840.	1.7	104
17	Slow slip events and the 2016 Te Araroa <i>M</i> _{<i>w</i>} 7.1 earthquake interaction: Northern Hikurangi subduction, New Zealand. Geophysical Research Letters, 2017, 44, 8336-8344.	1.5	22
18	Estimating network effect in geocenter motion: Theory. Journal of Geophysical Research: Solid Earth, 2017, 122, 8360-8375.	1.4	9

PAUL TREGONING

#	Article	IF	CITATIONS
19	Estimating network effect in geocenter motion: Applications. Journal of Geophysical Research: Solid Earth, 2017, 122, 8347-8359.	1.4	5
20	The kinematics of crustal deformation in Java from GPS observations: Implications for fault slip partitioning. Earth and Planetary Science Letters, 2017, 458, 69-79.	1.8	99
21	A new approach to estimate ice dynamic rates using satellite observations in East Antarctica. Cryosphere, 2017, 11, 1235-1245.	1.5	2
22	ICESHEET 1.0: a program to produce paleo-ice sheet reconstructions with minimal assumptions. Geoscientific Model Development, 2016, 9, 1673-1682.	1.3	20
23	Crustal strain partitioning and the associated earthquake hazard in the eastern Sundaâ€Banda Arc. Geophysical Research Letters, 2016, 43, 1943-1949.	1.5	85
24	An assessment of the <i>ICE6G_C(VM5a)</i> glacial isostatic adjustment model. Journal of Geophysical Research: Solid Earth, 2016, 121, 3939-3950.	1.4	51
25	A model of the western Laurentide Ice Sheet, using observations of glacial isostatic adjustment. Quaternary Science Reviews, 2016, 139, 1-16.	1.4	37
26	New Insights into the present-day kinematics of the central and western Papua New Guinea from GPS. Geophysical Journal International, 2015, 202, 993-1004.	1.0	33
27	A global water cycle reanalysis (2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble. Hydrology and Earth System Sciences, 2014, 18, 2955-2973.	1.9	121
28	Non-linear motions of Australian geodetic stations induced by non-tidal ocean loading and the passage of tropical cyclones. Journal of Geodesy, 2014, 88, 927-940.	1.6	4
29	Empirical modelling of site-specific errors in continuous GPS data. Journal of Geodesy, 2014, 88, 887-900.	1.6	30
30	Australian sea levels—Trends, regional variability and influencing factors. Earth-Science Reviews, 2014, 136, 155-174.	4.0	106
31	Continental breakup and UHP rock exhumation in action: GPS results from the <scp>W</scp> oodlark <scp>R</scp> ift, <scp>P</scp> apua <scp>N</scp> ew <scp>G</scp> uinea. Geochemistry, Geophysics, Geosystems, 2014, 15, 4267-4290.	1.0	54
32	Extracting White Noise Statistics in GPS Coordinate Time Series. IEEE Geoscience and Remote Sensing Letters, 2013, 10, 563-567.	1.4	37
33	The ANU GRACE visualisation web portal. Computers and Geosciences, 2013, 52, 227-233.	2.0	11
34	A decade of horizontal deformation from great earthquakes. Journal of Geophysical Research: Solid Earth, 2013, 118, 2371-2381.	1.4	54
35	Characterizing and minimizing the effects of noise in tide gauge time series: relative and geocentric sea level rise around Australia. Geophysical Journal International, 2013, 194, 719-736.	1.0	30
36	The effect of melting land-based ice masses on sea-level around the Australian coastline. Australian Journal of Earth Sciences, 2012, 59, 457-467.	0.4	13

PAUL TREGONING

#	Article	IF	CITATIONS
37	Analysis of uncertainties in the inference of groundwater dynamics from gravity recovery and climate experiment observations over Australia. , 2012, , .		Ο
38	Tropical cyclones and the ecohydrology of Australia's recent continentalâ€scale drought. Geophysical Research Letters, 2012, 39, .	1.5	55
39	Absolute Calibration in Bass Strait, Australia: TOPEX, Jason-1 and OSTM/Jason-2. Marine Geodesy, 2011, 34, 242-260.	0.9	65
40	Correction to "Atmospheric effects and spurious signals in GPS analyses― Journal of Geophysical Research, 2011, 116, .	3.3	21
41	Relationship between glacial isostatic adjustment and gravity perturbations observed by GRACE. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	25
42	Slow slip events in Mexico revised from the processing of 11 year GPS observations. Journal of Geophysical Research, 2010, 115, .	3.3	79
43	Quantifying GRACE data contamination effects on hydrological analysis in the Murray–Darling Basin, southeast Australia. Australian Journal of Earth Sciences, 2010, 57, 329-335.	0.4	13
44	Quantifying FES2004 S2 tidal model from multiple space-geodesy techniques, GPS and GRACE, over North West Australia. Journal of Geodesy, 2009, 83, 915-923.	1.6	13
45	Detecting hydrologic deformation using GRACE and GPS. Geophysical Research Letters, 2009, 36, .	1.5	165
46	Atmospheric effects and spurious signals in GPS analyses. Journal of Geophysical Research, 2009, 114, .	3.3	151
47	Glacial isostatic adjustment and nonstationary signals observed by GRACE. Journal of Geophysical Research, 2009, 114, .	3.3	33
48	Basinâ€scale, integrated observations of the early 21st century multiyear drought in southeast Australia. Water Resources Research, 2009, 45, .	1.7	287
49	GRACE estimates of sea surface height anomalies in the Gulf of Carpentaria, Australia. Earth and Planetary Science Letters, 2008, 271, 241-244.	1.8	38
50	Shallow intraplate earthquakes in Western Australia observed by Interferometric Synthetic Aperture Radar. Journal of Geophysical Research, 2008, 113, .	3.3	53
51	Uncertainty analysis of earthquake source parameters determined from InSAR: A simulation study. Journal of Geophysical Research, 2007, 112, .	3.3	47
52	Dynamic Planet. International Association of Geodesy Symposia, 2007, , .	0.2	5
53	The impact of mapping functions for the neutral atmosphere based on numerical weather models in GPS data analysis. , 2007, , 837-843.		12
54	Impact of solid Earth tide models on GPS coordinate and tropospheric time series. Geophysical Research Letters, 2006, 33, .	1.5	47

Paul Tregoning

#	Article	IF	CITATIONS
55	Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophysical Research Letters, 2006, 33, .	1.5	1,010
56	Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophysical Research Letters, 2006, 33, .	1.5	139
57	Deformation in the Jura Mountains (France): First results from semi-permanent GPS measurements. Earth and Planetary Science Letters, 2006, 245, 365-372.	1.8	21
58	Tectonic interpretation of aftershock relocations in eastern Papua New Guinea using teleseismic data and the arrival pattern method. Geophysical Journal International, 2005, 160, 1103-1111.	1.0	7
59	Effect of post-seismic deformation on earth orientation parameter estimates from VLBI observations: a case study at Gilcreek, Alaska. Journal of Geodesy, 2005, 79, 196-202.	1.6	9
60	Effects of atmospheric pressure loading and seven-parameter transformations on estimates of geocenter motion and station heights from space geodetic observations. Journal of Geophysical Research, 2005, 110, .	3.3	65
61	Atmospheric pressure loading corrections applied to GPS data at the observation level. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	127
62	Evidence for active subduction at the New Guinea Trench. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	41
63	Is the Australian Plate deforming? A space geodetic perspective. , 2003, , .		14
64	Motion and rigidity of the Pacific Plate and implications for plate boundary deformation. Journal of Geophysical Research, 2002, 107, ETG 19-1-ETG 19-15.	3.3	218
65	Plate kinematics in the western Pacific derived from geodetic observations. Journal of Geophysical Research, 2002, 107, ECV 7-1-ECV 7-8.	3.3	71
66	Resolving slip-vector azimuths and plate motion along the southern boundary of the South Bismarck Plate, Papua New Guinea. Australian Journal of Earth Sciences, 2001, 48, 745-750.	0.4	0
67	Resolving slip-vector azimuths and plate motion along the southern boundary of the South Bismarck Plate, Papua New Guinea. Australian Journal of Earth Sciences, 2001, 48, 745.	0.4	2
68	A new facility to enhance Australian GPS-geodetic research. Journal of Spatial Science, 2000, 45, 20-30.	0.1	1
69	Present-day crustal motion in Papua New Guinea. Earth, Planets and Space, 2000, 52, 727-730.	0.9	20
70	The search for postglacial rebound near the Lambert Glacier, Antarctica. Earth, Planets and Space, 2000, 52, 1037-1041.	0.9	16
71	A new facility to enhance Australian GPS-geodetic research. Journal of Spatial Science, 2000, 45, 20-30.	0.1	1
72	Monitoring Isostatic Rebound in Antarctica with the Use of Continuous Remote GPS Observations. GPS Solutions, 1999, 2, 70-75.	2.2	11

PAUL TREGONING

#	Article	IF	CITATIONS
73	Motion of the South Bismarck Plate, Papua New Guinea. Geophysical Research Letters, 1999, 26, 3517-3520.	1.5	43
74	Estimates of present-day glacial rebound in the Lambert Glacier Region, Antarctica. Geophysical Research Letters, 1999, 26, 1461-1464.	1.5	13
75	Estimation of current plate motions in Papua New Guinea from Global Positioning System observations. Journal of Geophysical Research, 1998, 103, 12181-12203.	3.3	148
76	Present-day crustal motion in the Solomon Islands from GPS observations. Geophysical Research Letters, 1998, 25, 3627-3630.	1.5	26
77	Accuracy of absolute precipitable water vapor estimates from GPS observations. Journal of Geophysical Research, 1998, 103, 28701-28710.	3.3	192
78	First geodetic measurement of convergence across the Java Trench. Geophysical Research Letters, 1994, 21, 2135-2138.	1.5	122
79	Twentieth century constraints on sea level change and earthquake deformation at Macquarie Island. Geophysical Journal International, 0, 182, 781-796.	1.0	26
80	Thank You to Our 2021 Peer Reviewers. Journal of Geophysical Research: Solid Earth, 0, , .	1.4	0