
Guohao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10493273/publications.pdf Version: 2024-02-01

Спонуо Мульс

#	Article	IF	CITATIONS
1	Oxygen-generating hybrid nanoparticles to enhance fluorescent/photoacoustic/ultrasound imaging guided tumor photodynamic therapy. Biomaterials, 2017, 112, 324-335.	11.4	226
2	Microneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy. Nature Communications, 2017, 8, 1777.	12.8	146
3	Hybrid graphene/Au activatable theranostic agent for multimodalities imaging guided enhanced photothermal therapy. Biomaterials, 2016, 79, 36-45.	11.4	144
4	Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy. Biomaterials, 2016, 103, 219-228.	11.4	142
5	Phototheranostic Metal-Phenolic Networks with Antiexosomal PD-L1 Enhanced Ferroptosis for Synergistic Immunotherapy. Journal of the American Chemical Society, 2022, 144, 787-797.	13.7	142
6	Nanotubes-Embedded Indocyanine Green–Hyaluronic Acid Nanoparticles for Photoacoustic-Imaging-Guided Phototherapy. ACS Applied Materials & Interfaces, 2016, 8, 5608-5617.	8.0	118
7	Engineering Radiosensitizerâ€Based Metalâ€Phenolic Networks Potentiate STING Pathway Activation for Advanced Radiotherapy. Advanced Materials, 2022, 34, e2105783.	21.0	107
8	A nanounit strategy reverses immune suppression of exosomal PD-L1 and is associated with enhanced ferroptosis. Nature Communications, 2021, 12, 5733.	12.8	95
9	Oxygenâ€Enriched Metalâ€Phenolic Xâ€Ray Nanoprocessor for Cancer Radioâ€Radiodynamic Therapy in Combination with Checkpoint Blockade Immunotherapy. Advanced Science, 2021, 8, 2003338.	11.2	91
10	Metal-Phenolic Network-Enabled Lactic Acid Consumption Reverses Immunosuppressive Tumor Microenvironment for Sonodynamic Therapy. ACS Nano, 2021, 15, 16934-16945.	14.6	90
11	Engineering a Hydrogenâ€Sulfideâ€Based Nanomodulator to Normalize Hyperactive Photothermal Immunogenicity for Combination Cancer Therapy. Advanced Materials, 2021, 33, e2008481.	21.0	87
12	Phenolic immunogenic cell death nanoinducer for sensitizing tumor to PD-1 checkpoint blockade immunotherapy. Biomaterials, 2021, 269, 120638.	11.4	86
13	Biogenic nanobubbles for effective oxygen delivery and enhanced photodynamic therapy of cancer. Acta Biomaterialia, 2020, 108, 313-325.	8.3	61
14	Long-Acting Release Formulation of Exendin-4 Based on Biomimetic Mineralization for Type 2 Diabetes Therapy. ACS Nano, 2017, 11, 5062-5069.	14.6	60
15	Chemical Conjugation of Evans Blue Derivative: A Strategy to Develop Long-Acting Therapeutics through Albumin Binding. Theranostics, 2016, 6, 243-253.	10.0	58
16	Construction and Evaluation of a Targeted Hyaluronic Acid Nanoparticle/Photosensitizer Complex for Cancer Photodynamic Therapy. ACS Applied Materials & Interfaces, 2017, 9, 32509-32519.	8.0	52
17	Theranostic Hyaluronic Acid–Iron Micellar Nanoparticles for Magneticâ€Fieldâ€Enhanced in vivo Cancer Chemotherapy. ChemMedChem, 2018, 13, 78-86.	3.2	43
18	A Metalâ€Phenolic Nanosensitizer Performs Hydrogen Sulfideâ€Reprogrammed Oxygen Metabolism for Cancer Radiotherapy Intensification and Immunogenicity. Angewandte Chemie - International Edition, 2022, 61, .	13.8	39

GUOHAO WANG

#	Article	IF	CITATIONS
19	Evans Blue Derivative-Functionalized Gold Nanorods for Photothermal Therapy-Enhanced Tumor Chemotherapy. ACS Applied Materials & Interfaces, 2018, 10, 15140-15149.	8.0	38
20	Surface-modified GVs as nanosized contrast agents for molecular ultrasound imaging of tumor. Biomaterials, 2020, 236, 119803.	11.4	33
21	Stable Evans Blue Derived Exendin-4 Peptide for Type 2 Diabetes Treatment. Bioconjugate Chemistry, 2016, 27, 54-58.	3.6	25
22	Identification of a Glypicanâ€3â€Binding Peptide for In Vivo Nonâ€Invasive Human Hepatocellular Carcinoma Detection. Macromolecular Bioscience, 2017, 17, 1600335.	4.1	21
23	A Tripleâ€Kill Strategy for Tumor Eradication Reinforced by Metalâ€Phenolic Network Nanopumps. Advanced Functional Materials, 2022, 32, .	14.9	21
24	Glypican-3 (GPC3) targeted Fe ₃ O ₄ core/Au shell nanocomplex for fluorescence/MRI/photoacoustic imaging-guided tumor photothermal therapy. Biomaterials Science, 2019, 7, 5258-5269.	5.4	20
25	A metal–polyphenolic nanosystem with NIR-II fluorescence-guided combined photothermal therapy and radiotherapy. Chemical Communications, 2021, 57, 11473-11476.	4.1	17
26	A Two‣tep Flexible Ultrasound Strategy to Enhance Tumor Radiotherapy via Metal–Phenolic Network Nanoplatform. Advanced Functional Materials, 2022, 32, .	14.9	10
27	A "three musketeers―tactic for inclining interferon-γ as a comrade-in-arm to reinforce the synergistic-tumoricidal therapy. Nano Research, 2022, 15, 3458-3470.	10.4	6
28	Antidiabetic Effect of Abextide, a Longâ€Acting Exendinâ€4 Analogue in Cynomolgus Monkeys. Advanced Healthcare Materials, 2019, 8, e1800686.	7.6	4
29	Tumor Retention of Nanoscale Gas Vesicles for Molecular Ultrasound Imaging. , 2018, , .		0
30	A Metalâ€Phenolic Nanosensitizer Performs Hydrogen Sulfideâ€Reprogrammed Oxygen Metabolism for Cancer Radiotherapy Intensification and Immunogenicity. Angewandte Chemie, 0, , .	2.0	0