Ronald D Delaune

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10493169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methane release from Gulf coast wetlands. Tellus, Series B: Chemical and Physical Meteorology, 2022, 35, 8.	1.6	57
2	Peripheral freshwater deltaic wetlands are hotspots of methane flux in the coastal zone. Science of the Total Environment, 2021, 775, 145784.	8.0	9
3	Exploring anaerobic CO2 production response to elevated nitrate levels in Gulf of Mexico coastal wetlands: Phenomena and relationships. Science of the Total Environment, 2020, 709, 136158.	8.0	2
4	Potential use of biochar and rhamnolipid biosurfactant for remediation of crude oil-contaminated coastal wetland soil: Ecotoxicity assessment. Chemosphere, 2020, 253, 126617.	8.2	30
5	Remediation of crude oil-contaminated coastal marsh soil: Integrated effect of biochar, rhamnolipid biosurfactant and nitrogen application. Journal of Hazardous Materials, 2020, 396, 122595.	12.4	74
6	Factors influencing blue carbon accumulation across a 32â€year chronosequence of created coastal marshes. Ecosphere, 2019, 10, e02828.	2.2	32
7	Nitrogen Mineralization in Mississippi River Deltaic Plain Freshwater Floating Marshes. Communications in Soil Science and Plant Analysis, 2019, 50, 1966-1974.	1.4	0
8	Comparing carbon accumulation in restored and natural wetland soils of coastal Louisiana. International Journal of Sediment Research, 2019, 34, 600-607.	3.5	12
9	Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures. Journal of Colloid and Interface Science, 2019, 553, 298-307.	9.4	115
10	Consequences of Mississippi River diversions on nutrient dynamics of coastal wetland soils and estuarine sediments: A review. Estuarine, Coastal and Shelf Science, 2019, 224, 209-216.	2.1	34
11	Mercury and selenium levels, and Se:Hg molar ratios in freshwater fish from South Louisiana. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 238-245.	1.7	10
12	Removing mercury from aqueous solution using sulfurized biochar and associated mechanisms. Environmental Pollution, 2019, 244, 627-635.	7.5	108
13	Lead sorption characteristics of various chicken bone part-derived chars. Environmental Geochemistry and Health, 2019, 41, 1675-1685.	3.4	15
14	Mercury adsorption in the Mississippi River deltaic plain freshwater marsh soil of Louisiana Gulf coastal wetlands. Chemosphere, 2018, 195, 455-462.	8.2	21
15	Effect of pyrolysis temperature on phosphate adsorption characteristics and mechanisms of crawfish char. Journal of Colloid and Interface Science, 2018, 525, 143-151.	9.4	61
16	Degradation of Orange G by Fenton-like reaction with Fe-impregnated biochar catalyst. Bioresource Technology, 2018, 249, 368-376.	9.6	149
17	Can denitrification explain coastal wetland loss: A review of case studies in the Mississippi Delta and New England. Estuarine, Coastal and Shelf Science, 2018, 213, 294-304.	2.1	13
18	Response of microbial populations regulating nutrient biogeochemical cycles to oiling of coastal saltmarshes from the Deepwater Horizon oil spill. Environmental Pollution, 2018, 241, 136-147.	7.5	21

#	Article	IF	CITATIONS
19	Distribution of arsenic and other metals in crayfish tissues (Procambarus clarkii) under different production practices. Science of the Total Environment, 2017, 574, 322-331.	8.0	42
20	Impacts of the long-term presence of buried crude oil on salt marsh soil denitrification in Barataria Bay, Louisiana. Ecological Engineering, 2017, 99, 454-461.	3.6	23
21	The Effect of Atrazine on Louisiana Gulf Coast Estuarine Phytoplankton. Archives of Environmental Contamination and Toxicology, 2017, 72, 178-188.	4.1	15
22	Marsh vulnerability to sea-level rise. Nature Climate Change, 2017, 7, 756-756.	18.8	28
23	Adsorption of Cd, Cu and Zn from aqueous solutions onto ferronickel slag under different potentially toxic metal combination. Water Science and Technology, 2016, 73, 993-999.	2.5	6
24	Fate of Soil Organic Carbon During Wetland Loss. Wetlands, 2016, 36, 1167-1181.	1.5	49
25	Heavy metal distribution and water quality characterization of water bodies in Louisiana's Lake Pontchartrain Basin, USA. Environmental Monitoring and Assessment, 2016, 188, 628.	2.7	32
26	Comparison of single and competitive metal adsorption by pepper stem biochar. Archives of Agronomy and Soil Science, 2016, 62, 617-632.	2.6	35
27	Sequential anaerobic–aerobic biodegradation of 2,3,7,8-TCDD contaminated soil in the presence of CMC-coated nZVI and surfactant. Environmental Technology (United Kingdom), 2016, 37, 388-398.	2.2	23
28	Adsorption and desorption of arsenate in Louisiana rice soils. Archives of Agronomy and Soil Science, 2016, 62, 856-864.	2.6	8
29	Long-term performance of vertical-flow and horizontal-flow constructed wetlands as affected by season, N load, and operating stage for treating nitrogen from domestic sewage. Environmental Science and Pollution Research, 2016, 23, 1108-1119.	5.3	20
30	Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere, 2016, 142, 77-83.	8.2	516
31	United States Gulf of Mexico Coastal Marsh Vegetation Responses and Sensitivities to Oil Spill: A Review. Environments - MDPI, 2015, 2, 586-607.	3.3	17
32	Greenhouse Gas Emission by Static Chamber and Eddy Flux Methods. Soil Science Society of America Book Series, 2015, , 427-437.	0.3	4
33	Fresh and weathered crude oil effects on potential denitrification rates of coastal marsh soil. Chemosphere, 2015, 134, 120-126.	8.2	16
34	Effects of dispersant used for oil spill remediation on nitrogen cycling in Louisiana coastal salt marsh soil. Chemosphere, 2015, 119, 562-567.	8.2	22
35	Water quality of a coastal Louisiana swamp and how dredging is undermining restoration efforts. Estuarine, Coastal and Shelf Science, 2015, 152, 23-32.	2.1	10
36	Investigation of Biogeochemical Functional Proxies in Headwater Streams Across a Range of Channel and Catchment Alterations. Environmental Management, 2014, 53, 534-548.	2.7	7

#	Article	IF	CITATIONS
37	Nutrient Dynamics in a Restored Wetland. Communications in Soil Science and Plant Analysis, 2014, 45, 609-623.	1.4	2
38	Nitrate Removal and Nitrate Removal Velocity in Coastal Louisiana Freshwater Wetlands. Analytical Letters, 2013, 46, 1171-1181.	1.8	3
39	Will hydrologic restoration of Mississippi River riparian wetlands improve their critical biogeochemical functions?. Ecological Engineering, 2013, 60, 192-198.	3.6	34
40	Effect of redox potential and pH status on degradation and adsorption behavior of tylosin in dairy lagoon sediment suspension. Chemosphere, 2013, 91, 1583-1589.	8.2	28
41	Mercury Uptake by Modified Mackinawite. Soil and Sediment Contamination, 2013, 22, 95-104.	1.9	9
42	A comparison analysis of edge-of-field run-off from two sugarcane fields. Archives of Agronomy and Soil Science, 2012, 58, 51-59.	2.6	1
43	Fate of Nitrate in Vegetated Brackish Coastal Marsh. Soil Science Society of America Journal, 2012, 76, 1919-1927.	2.2	47
44	Mercury uptake by biogenic silica modified with L ysteine. Environmental Technology (United) Tj ETQq0 0 0 r	gBT_/Overl 2.2	ock 10 Tf 50
45	Denitrification in coastal Louisiana: A spatial assessment and research needs. Journal of Sea Research, 2010, 63, 157-172.	1.6	51
46	Incomplete Acetylene Inhibition of Nitrous Oxide Reduction in Potential Denitrification Assay as Revealed by using ¹⁵ N-Nitrate Tracer. Communications in Soil Science and Plant Analysis, 2010, 41, 2201-2210.	1.4	39
47	Toxic Elements in Aquatic Sediments: Distinguishing Natural Variability from Anthropogenic Effects. Water, Air, and Soil Pollution, 2009, 203, 179-191.	2.4	7
48	Total Hg and methyl Hg distribution in sediments of selected Louisiana water bodies. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2009, 44, 557-567.	1.7	2
49	Evaluation of a hybrid constructed wetland for treating domestic sewage from individual housing units surrounding agricultural villages in South Korea. Journal of Environmental Monitoring, 2009, 11, 134-144.	2.1	19
50	Evaluation of 2- and 3-stage combinations of vertical and horizontal flow constructed wetlands for treating greenhouse wastewater. Ecological Engineering, 2008, 32, 121-132.	3.6	48
51	Total and methyl mercury in wetland soils and sediments of Louisiana's Pontchartrain Basin (USA). Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 1657-1662.	1.7	7
52	Influence of salinity level on sediment denitrification in a Louisiana estuary receiving diverted Mississippi River water. Archives of Agronomy and Soil Science, 2008, 54, 249-257.	2.6	51
53	Nonpoint Source of Nutrients and Herbicides Associated with Sugarcane Production and Its Impact on Louisiana Coastal Water Quality. Journal of Environmental Quality, 2008, 37, 2275-2283.	2.0	19

54	Characterization of mercury and other heavy metals in sediment of an ecological important backwater area of River Tisza (Hungary). Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42, 859-864.	1.7	4
	10×10^{-10}		

#	Article	IF	CITATIONS
55	Major Biogeochemical Processes in Soils-A Microcosm Incubation from Reducing to Oxidizing Conditions. Soil Science Society of America Journal, 2007, 71, 1406-1417.	2.2	142
56	Observations of mercury fate and transport beneath a sediment cap. Land Contamination and Reclamation, 2007, 15, 401-411.	0.4	6
57	Direct measurement of denitrification activity in a Gulf coast freshwater marsh receiving diverted Mississippi River water. Chemosphere, 2006, 65, 2449-2455.	8.2	45
58	Pathogen Indicator Microbes and Heavy Metals in Lake Pontchartrain following Hurricane Katrina. Environmental Science & Technology, 2006, 40, 5904-5910.	10.0	34
59	Marsh vertical accretion via vegetative growth. Estuarine, Coastal and Shelf Science, 2006, 69, 370-380.	2.1	325
60	Comparing methods and sediment contaminant indicators for determining produced water fate in a Louisiana estuary. Marine Pollution Bulletin, 2003, 46, 731-740.	5.0	10
61	Sulfate reduction in Louisiana marsh soils of varying salinities. Communications in Soil Science and Plant Analysis, 2002, 33, 79-94.	1.4	15
62	Changes in methylmercury concentration during storage: effect of temperature. Organic Geochemistry, 2001, 32, 755-758.	1.8	23
63	Developing a Method to Track Oil and Gas Produced Water Discharges in Estuarine Systems Using Salinity as a Conservative Tracer. Marine Pollution Bulletin, 2001, 42, 1118-1127.	5.0	15
64	Emissions of Reduced Gaseous Sulfur Compounds from Wastewater Sludge: Redox Effects. Environmental Engineering Science, 2000, 17, 1-8.	1.6	11
65	Methane flux from Missippi River deltaic plain wetlands. Biogeochemistry, 1997, 37, 227-236.	3.5	37
66	Field sampling of trace levels of hydrogen sulfide with the use of solid adsorbent preconcentration. Field Analytical Chemistry and Technology, 1997, 1, 145-149.	0.8	12
67	Evaluation of various solid adsorbents for sampling trace levels of methanethiol. Organic Geochemistry, 1996, 24, 941-944.	1.8	21
68	Methane and nitrous oxide emissions from laboratory measurements of rice soil suspension: Effect of soil oxidation-reduction status. Chemosphere, 1993, 26, 251-260.	8.2	135
69	Chromium Redox Chemistry in a Lower Mississippi Valley Bottomland Hardwood Wetland. Environmental Science & Technology, 1992, 26, 1217-1226.	10.0	139
70	Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science & Technology, 1991, 25, 1414-1419.	10.0	905
71	Transformations of selenium as affected by sediment oxidation-reduction potential and pH. Environmental Science & Technology, 1990, 24, 91-96.	10.0	259
72	Effect of sediment pH and oxidation-reduction potential on PCB mineralization. Water, Air, and Soil Pollution, 1988, 37, 439-447.	2.4	18

#	Article	IF	CITATIONS
73	Methane production in Mississippi River deltaic plain peat. Organic Geochemistry, 1986, 9, 193-197.	1.8	18
74	Mineralization and sorption ofp-nitrophenol in estuarine sediment. Environmental Toxicology and Chemistry, 1986, 5, 175-178.	4.3	8
75	Impact of dispersed and undispersed oil entering a gulf coast salt marsh. Environmental Toxicology and Chemistry, 1984, 3, 609-616.	4.3	29
76	Methane release from Gulf coast wetlands. Tellus, Series B: Chemical and Physical Meteorology, 1983, 35B, 8-15.	1.6	94
77	Nitrogen and Phosphorus Distribution and Utilization by Spartina alterniflora in a Louisiana Gulf Coast Marsh. Estuaries and Coasts, 1980, 3, 111.	1.7	97
78	Effect of Estuarine Sediment pH and Oxidation-Reduction Potential on Microbial Hydrocarbon Degradation. Applied and Environmental Microbiology, 1980, 40, 365-369.	3.1	172