SÃ;ndor Tömösközi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10492109/publications.pdf Version: 2024-02-01

SÃ:NDOP TöMöSKöZL

#	Article	IF	CITATIONS
1	Variation in the Content and Composition of Tocols in a Wheat Population. Foods, 2022, 11, 1343.	4.3	2
2	Comparative compositional and functional characterisation of rye varieties and novel industrial milling fractions. International Journal of Food Science and Technology, 2022, 57, 4463-4472.	2.7	2
3	Characterization of chemical composition and technoâ€functional properties of oat cultivars. Cereal Chemistry, 2021, 98, 1183-1192.	2.2	5
4	Comparative study on the rheological and baking behaviour of enzyme-treated and arabinoxylan-enriched gluten-free straight dough and sourdough small-scale systems. Journal of Cereal Science, 2021, 101, 103292.	3.7	7
5	Investigation of Protein and Epitope Characteristics of Oats and Its Implications for Celiac Disease. Frontiers in Nutrition, 2021, 8, 702352.	3.7	5
6	Characterisation and comparison of selected wheat (Triticum aestivum L.) cultivars and their blends to develop a gluten reference material. Food Chemistry, 2020, 313, 126049.	8.2	13
7	Are current analytical methods suitable to verify VITAL® 2.0/3.0 allergen reference doses for EU allergens in foods?. Food and Chemical Toxicology, 2020, 145, 111709.	3.6	83
8	Variability and cluster analysis of arabinoxylan content and its molecular profile in crossed wheat lines. Journal of Cereal Science, 2020, 95, 103074.	3.7	7
9	Further Steps Toward the Development of Gluten Reference Materials – Wheat Flours or Protein Isolates?. Frontiers in Plant Science, 2020, 11, 906.	3.6	6
10	Stability analysis of wheat lines with increased level of arabinoxylan. PLoS ONE, 2020, 15, e0232892.	2.5	11
11	A novel approach to the characterization of old wheat (<scp><i>Triticum aestivum</i></scp> L.) varieties by complex rheological analysis. Journal of the Science of Food and Agriculture, 2020, 100, 4409-4417.	3.5	6
12	Comparison of the arabinoxylan composition and physical properties of old and modern bread wheat (<i>Triticum aestivum</i> L.) and landraces genotypes. Cereal Chemistry, 2020, 97, 505-514.	2.2	7
13	Complex rheological characterization of normal, waxy and high-amylose wheat lines. Journal of Cereal Science, 2020, 93, 102982.	3.7	7
14	Stability analysis of wheat lines with increased level of arabinoxylan. , 2020, 15, e0232892.		0
15	Stability analysis of wheat lines with increased level of arabinoxylan. , 2020, 15, e0232892.		0
16	Stability analysis of wheat lines with increased level of arabinoxylan. , 2020, 15, e0232892.		0
17	Stability analysis of wheat lines with increased level of arabinoxylan. , 2020, 15, e0232892.		0
18	Investigation of the possibility of combined macro and micro test baking instrumentation methodology in wheat research. Journal of Cereal Science, 2019, 87, 239-247.	3.7	1

SÃINDOR TöMöSKöZI

#	Article	IF	CITATIONS
19	Investigation of the effect of pentosan addition and enzyme treatment on the rheological properties of millet flour based model dough systems. Food Hydrocolloids, 2019, 94, 381-390.	10.7	12
20	Possibilities and barriers in fibre-targeted breeding: Characterisation of arabinoxylans in wheat varieties and their breeding lines. Journal of Cereal Science, 2019, 86, 117-123.	3.7	8
21	Characterization of rheological properties of rye arabinoxylans in buckwheat model systems. Food Hydrocolloids, 2018, 80, 33-41.	10.7	18
22	Investigation of scale reduction in a laboratory bread-making procedure: Comparative analysis and method development. Journal of Cereal Science, 2018, 79, 267-275.	3.7	13
23	Variation in protein composition among wheat (Triticum aestivum L.) cultivars to identify cultivars suitable as reference material for wheat gluten analysis. Food Chemistry, 2018, 267, 387-394.	8.2	62
24	Evaluation of carbohydrate properties and end-use quality of hexaploid triticale and its relationship to solvent retention capacity. Journal of Cereal Science, 2018, 84, 95-102.	3.7	5
25	Grain constituents and starch characteristics influencing inÂvitro enzymatic starch hydrolysis in Hungarian triticale genotypes developed for food consumption. Cereal Chemistry, 2018, 95, 861-871.	2.2	5
26	Effect of Differently Extracted Arabinoxylan on Gluten-Free Sourdough-Bread Properties. Journal of Food Quality, 2018, 2018, 1-10.	2.6	12
27	Improving gluten-free buckwheat bread by sourdough fermentation and addition of arabinoxylan and pyranose 2-oxidase. Bodenkultur, 2018, 69, 227-237.	0.2	3
28	Chemical and rheological characterization of arabinoxylan isolates from rye bran. Chemical and Biological Technologies in Agriculture, 2017, 4, .	4.6	12
29	Protein interactions during flour mixing using wheat flour with altered starch. Food Chemistry, 2017, 231, 247-257.	8.2	25
30	Optimization of Arabinoxylan Isolation from Rye Bran by Adapting Extraction Solvent and Use of Enzymes. Journal of Food Science, 2017, 82, 2562-2568.	3.1	20
31	Development and characterization of wheat lines with increased levels of arabinoxylan. Euphytica, 2017, 213, 1.	1.2	16
32	Protein-transitions in and out of the dough matrix in wheat flour mixing. Food Chemistry, 2017, 217, 542-551.	8.2	35
33	Rheological and stability aspects of dry and hydrothermally heat treated aleurone-rich wheat milling fraction. Food Chemistry, 2017, 220, 9-17.	8.2	7
34	Structural and functional characterization of oxidized feruloylated arabinoxylan from wheat. Food Hydrocolloids, 2017, 63, 219-225.	10.7	26
35	Ancient Wheats and Pseudocereals for Possible use in Cereal-Grain Dietary Intolerances. , 2017, , 353-389.		13
36	Hydroxyl radical oxidation of feruloylated arabinoxylan. Carbohydrate Polymers, 2016, 152, 263-270.	10.2	13

SÃINDOR TöMöSKöZI

#	Article	IF	CITATIONS
37	Comparison of the rheological and end-product properties of an industrial aleurone-rich wheat flour, whole grain wheat and rye flour. Journal of Cereal Science, 2016, 69, 40-48.	3.7	39
38	Comparison of the effects of different heat treatment processes on rheological properties of cake and bread wheat flours. Food Chemistry, 2016, 190, 990-996.	8.2	64
39	Sustainability, Quality, and Health: The Past and Future of Cereal Science – A Report on the 5th Cereals&Europe Spring Meeting. Cereal Foods World, 2015, 60, 240-242.	0.2	0
40	Identification of the factors affecting the analytical results of food allergen ELISA methods. European Food Research and Technology, 2015, 241, 127-136.	3.3	29
41	Investigation of incurred single- and multi-component model food matrices for determination of food proteins triggering allergy and coeliac disease. European Food Research and Technology, 2014, 239, 923-932.	3.3	13
42	Pentosan extraction from rye bran on pilot scale for application inÂgluten-free products. Food Hydrocolloids, 2014, 35, 606-612.	10.7	32
43	Historical changes in grain yield and quality of spring wheat varieties cultivated in Siberia from 1900 to 2010. Canadian Journal of Plant Science, 2013, 93, 425-433.	0.9	38
44	Wheat Storage Proteins in Transgenic Rice Endosperm. Journal of Agricultural and Food Chemistry, 2013, 61, 7606-7614.	5.2	11
45	Development of Incurred Reference Material for Improving Conditions of Gluten Quantification. Journal of AOAC INTERNATIONAL, 2012, 95, 382-387.	1.5	22
46	Comparative Study of the Effect of Incorporated Individual Wheat Storage Proteins on Mixing Properties of Rice and Wheat Doughs. Journal of Agricultural and Food Chemistry, 2011, 59, 9664-9672.	5.2	15
47	Development of milk and egg incurred reference materials for the validation of food allergen detection methods. Quality Assurance and Safety of Crops and Foods, 2010, 2, 208-215.	3.4	32
48	Towards development of incurred materials for quality assurance purposes in the analysis of food allergens. Analytica Chimica Acta, 2010, 672, 25-29.	5.4	13
49	Managing food allergens in the food supply chain - viewed from different stakeholder perspectives. Quality Assurance and Safety of Crops and Foods, 2009, 1, 50-60.	3.4	38
50	Effects of incorporated amaranth albumins on the functional properties of wheat dough. Journal of the Science of Food and Agriculture, 2009, 89, 882-889.	3.5	32
51	Effects of Wheat Storage Proteins on the Functional Properties of Rice Dough. Journal of Agricultural and Food Chemistry, 2009, 57, 10442-10449.	5.2	6
52	Functional properties of protein preparations from amaranth seeds in model system. European Food Research and Technology, 2008, 226, 1343-1348.	3.3	22
53	Expression of Cholera Toxin B Subunit in Transgenic Rice Endosperm. Molecular Biotechnology, 2008, 40, 261-268.	2.4	34
54	Characterization of rice storage proteins by SE-HPLC and micro z-arm mixer. Journal of Cereal Science, 2008, 48, 68-76.	3.7	25

#	Article	IF	CITATIONS
55	Expression of a synthetic neutralizing epitope of porcine epidemic diarrhea virus fused with synthetic B subunit of Escherichia coli heat labile enterotoxin in rice endosperm. Molecular Biotechnology, 2007, 35, 215-23.	2.4	40
56	Bile acid binding capacity, dietary fibre and phenolic contents of modern and old bread wheat varieties and landraces: a comparison over the course of around one century. European Food Research and Technology, 0, , 1.	3.3	1