Michael J Plewa

List of Publications by Citations

Source: https://exaly.com/author-pdf/10490958/michael-j-plewa-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

165 103 11,191 50 h-index g-index citations papers 12,689 6.6 6.44 171 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
165	Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. <i>Mutation Research - Reviews in Mutation Research</i> , 2007 , 636, 178-242	7	2054
164	Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	688
163	Haloacetonitriles vs. regulated haloacetic acids: are nitrogen-containing DBPs more toxic?. <i>Environmental Science & Description (Contact of the Contact of </i>	10.3	486
162	Occurrence, synthesis, and mammalian cell cytotoxicity and genotoxicity of haloacetamides: an emerging class of nitrogenous drinking water disinfection byproducts. <i>Environmental Science & Environmental Science & Technology</i> , 2008 , 42, 955-61	10.3	385
161	Halonitromethane drinking water disinfection byproducts: chemical characterization and mammalian cell cytotoxicity and genotoxicity. <i>Environmental Science & Environmental Sc</i>	10.3	384
160	Chemical and biological characterization of newly discovered iodoacid drinking water disinfection byproducts. <i>Environmental Science & Environmental &</i>	10.3	382
159	CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review. <i>Journal of Environmental Sciences</i> , 2017 , 58, 64-76	6.4	327
158	Mammalian cell cytotoxicity and genotoxicity analysis of drinking water disinfection by-products. <i>Environmental and Molecular Mutagenesis</i> , 2002 , 40, 134-42	3.2	302
157	Evidence that hydrogen sulfide is a genotoxic agent. <i>Molecular Cancer Research</i> , 2006 , 4, 9-14	6.6	245
156	Mammalian cell cytotoxicity and genotoxicity of the haloacetic acids, a major class of drinking water disinfection by-products. <i>Environmental and Molecular Mutagenesis</i> , 2010 , 51, 871-8	3.2	214
155	Tribromopyrrole, brominated acids, and other disinfection byproducts produced by disinfection of drinking water rich in bromide. <i>Environmental Science & Environmental Scienc</i>	10.3	205
154	Formation of toxic iodinated disinfection by-products from compounds used in medical imaging. <i>Environmental Science & Discourse (March 2011)</i> , 45, 6845-54	10.3	201
153	Hydrogen sulfide induces direct radical-associated DNA damage. <i>Molecular Cancer Research</i> , 2007 , 5, 455-9	6.6	182
152	Toxic impact of bromide and iodide on drinking water disinfected with chlorine or chloramines. <i>Environmental Science & Environmental </i>	10.3	163
151	N-Nitrosamines and halogenated disinfection byproducts in U.S. Full Advanced Treatment trains for potable reuse. <i>Water Research</i> , 2016 , 101, 176-186	12.5	141
150	Comparative Mammalian Cell Toxicity of N-DBPs and C-DBPs. ACS Symposium Series, 2008, 36-50	0.4	125
149	TIC-Tox: A preliminary discussion on identifying the forcing agents of DBP-mediated toxicity of disinfected water. <i>Journal of Environmental Sciences</i> , 2017 , 58, 208-216	6.4	124

148	Chemical and biological characterization of wastewater generated from hydrothermal liquefaction of Spirulina. <i>Environmental Science & Environmental &</i>	10.3	124
147	Occurrence and Comparative Toxicity of Haloacetaldehyde Disinfection Byproducts in Drinking Water. <i>Environmental Science & Description (Mater Bruironmental Science & Description (Mater Bruironmental Science & Description)</i>	10.3	123
146	DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. <i>Environmental and Molecular Mutagenesis</i> , 2010 , 51, 304-14	3.2	121
145	Occurrence and toxicity of disinfection byproducts in European drinking waters in relation with the HIWATE epidemiology study. <i>Environmental Science & Environmental Science </i>	10.3	115
144	Transformation of iopamidol during chlorination. <i>Environmental Science & Environmental Science & Envi</i>	10.3	102
143	Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 1991 , 247, 57-64	3.3	100
142	An evaluation of the genotoxic properties of herbicides following plant and animal activation. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1984, 136, 233-45		95
141	Measurement of nitrosamine and nitramine formation from NOx reactions with amines during amine-based carbon dioxide capture for postcombustion carbon sequestration. <i>Environmental Science & Environmental Science & Environm</i>	10.3	94
140	Comparison of byproduct formation in waters treated with chlorine and iodine: relevance to point-of-use treatment. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	94
139	Biological mechanism for the toxicity of haloacetic acid drinking water disinfection byproducts. <i>Environmental Science & Environmental Science & Envi</i>	10.3	94
138	Genotoxicity of water concentrates from recreational pools after various disinfection methods. <i>Environmental Science & Environmental </i>	10.3	93
137	Modulation of the cytotoxicity and genotoxicity of the drinking water disinfection byproduct lodoacetic acid by suppressors of oxidative stress. <i>Environmental Science & Environmental Science & Envi</i>	10.3	88
136	Mutagenicity of atrazine: a maize-microbe bioassay. <i>Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology</i> , 1976 , 38, 287-92		85
135	The comet assay: genotoxic damage or nuclear fragmentation?. <i>Environmental and Molecular Mutagenesis</i> , 2003 , 42, 61-7	3.2	83
134	Human cell toxicogenomic analysis linking reactive oxygen species to the toxicity of monohaloacetic acid drinking water disinfection byproducts. <i>Environmental Science & Environmental Science & Envi</i>	10.3	82
133	Analysis of the cytotoxicity and mutagenicity of drinking water disinfection by-products in Salmonella typhimurium. <i>Teratogenesis, Carcinogenesis, and Mutagenesis</i> , 2002 , 22, 113-28		82
132	Boiling of simulated tap water: effect on polar brominated disinfection byproducts, halogen speciation, and cytotoxicity. <i>Environmental Science & Environmental Science & Env</i>	10.3	80
131	Induction of somatic DNA damage as measured by single cell gel electrophoresis and point mutation in leaves of tobacco plants. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> 1998 401 143-52	3.3	77

130	Analysis of mutagens with single cell gel electrophoresis, flow cytometry, and forward mutation assays in an isolated clone of Chinese hamster ovary cells 1998 , 32, 360-368		75
129	Activation of promutagens by green plants. <i>Annual Review of Genetics</i> , 1993 , 27, 93-113	14.5	72
128	Comparative human cell toxicogenomic analysis of monohaloacetic acid drinking water disinfection byproducts. <i>Environmental Science & Environmental Sc</i>	10.3	66
127	An evaluation of the genotoxic properties of insecticides following plant and animal activation. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1982, 101, 19-29		63
126	Differential toxicity of drinking water disinfected with combinations of ultraviolet radiation and chlorine. <i>Environmental Science & Environmental Sc</i>	10.3	62
125	Comparative Mammalian cell cytotoxicity of water concentrates from disinfected recreational pools. <i>Environmental Science & Eamp; Technology</i> , 2011 , 45, 4159-65	10.3	60
124	Formation of regulated and unregulated disinfection byproducts during chlorination of algal organic matter extracted from freshwater and marine algae. <i>Water Research</i> , 2018 , 142, 313-324	12.5	58
123	Characterization and Comparison of Disinfection By-Products of Four Major Disinfectants. <i>ACS Symposium Series</i> , 2000 , 299-314	0.4	57
122	A comparison of DNA repair using the comet assay in tobacco seedlings after exposure to alkylating agents or ionizing radiation. <i>Mutation Research - Genetic Toxicology and Environmental Mutagenesis</i> , 2000 , 470, 1-9	3	55
121	To regulate or not to regulate? What to do with more toxic disinfection by-products?. <i>Journal of Environmental Chemical Engineering</i> , 2020 , 8, 103939	6.8	54
120	Identification and Comparative Mammalian Cell Cytotoxicity of New Iodo-Phenolic Disinfection Byproducts in Chloraminated Oil and Gas Wastewaters. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 475-480	11	54
119	Assessing Additivity of Cytotoxicity Associated with Disinfection Byproducts in Potable Reuse and Conventional Drinking Waters. <i>Environmental Science & Environmental Science</i>	10.3	54
118	Toxicity of Wastewater with Elevated Bromide and Iodide after Chlorination, Chloramination, or Ozonation Disinfection. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	53
117	Comparative genotoxicity of nitrosamine drinking water disinfection byproducts in Salmonella and mammalian cells. <i>Mutation Research - Genetic Toxicology and Environmental Mutagenesis</i> , 2012 , 741, 109	9-35	52
116	The relationship between nickel chloride-induced peroxidation and DNA strand breakage in rat liver. <i>Toxicology and Applied Pharmacology</i> , 1992 , 117, 98-103	4.6	52
115	In Vitro Cytotoxicity and Adaptive Stress Responses to Selected Haloacetic Acid and Halobenzoquinone Water Disinfection Byproducts. <i>Chemical Research in Toxicology</i> , 2015 , 28, 2059-68	4	50
114	Antimicrobial egg cleaning by the fringed darter (Perciformes: Percidae: Etheostoma crossopterum): implications of a novel component of parental care in fishes. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2003 , 270, 2405-11	4.4	47
113	Chloramination of wastewater effluent: Toxicity and formation of disinfection byproducts. <i>Journal of Environmental Sciences</i> , 2017 , 58, 135-145	6.4	46

112	Mammalian cell DNA damage and repair kinetics of monohaloacetic acid drinking water disinfection by-products. <i>Environmental Science & Environmental &</i>	10.3	43
111	Chloroacetonitrile and n,2-dichloroacetamide formation from the reaction of chloroacetaldehyde and monochloramine in water. <i>Environmental Science & Environmental Science & E</i>	10.3	42
110	Toxicity of drinking water disinfection byproducts: cell cycle alterations induced by the monohaloacetonitriles. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	40
109	An investigation of some Turkish herbal medicines in Salmonella typhimurium and in the COMET assay in human lymphocytes. <i>Teratogenesis, Carcinogenesis, and Mutagenesis</i> , 1996 , 16, 125-38		40
108	Water Disinfection Byproducts Increase Natural Transformation Rates of Environmental DNA in Acinetobacter baylyi ADP1. <i>Environmental Science & Environmental DNA in Enviro</i>	10.3	38
107	Pyruvate remediation of cell stress and genotoxicity induced by haloacetic acid drinking water disinfection by-products. <i>Environmental and Molecular Mutagenesis</i> , 2013 , 54, 629-37	3.2	36
106	Comparative in vitro toxicity of nitrosamines and nitramines associated with amine-based carbon capture and storage. <i>Environmental Science & Environmental Science & Environm</i>	10.3	35
105	Comparison of DNA damage in plants as measured by single cell gel electrophoresis and somatic leaf mutations induced by monofunctional alkylating agents. <i>Environmental and Molecular Mutagenesis</i> , 1999 , 33, 279-86	3.2	34
104	The impact of iodinated X-ray contrast agents on formation and toxicity of disinfection by-products in drinking water. <i>Journal of Environmental Sciences</i> , 2017 , 58, 173-182	6.4	33
103	Induction of somatic mutations in Tradescantia clone 4430 by three phenylenediamine isomers and the antimutagenic mechanisms of diethyldithiocarbamate and ammonium meta-vanadate. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1994, 306, 165-72	3.3	33
102	Comparative Toxicity of High-Molecular Weight Iopamidol Disinfection Byproducts. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 81-84	11	31
101	Biochemical and mutagenic characterization of plant-activated aromatic amines. <i>Environmental Toxicology and Chemistry</i> , 1993 , 12, 1353-1363	3.8	31
100	The plant cell/microbe coincubation assay for the analysis of plant-activated promutagens. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 1988 , 197, 207-19	3.3	31
99	Charting a New Path To Resolve the Adverse Health Effects of DBPs. ACS Symposium Series, 2015, 3-23	0.4	30
98	Testing for additivity in chemical mixtures using a fixed-ratio ray design and statistical equivalence testing methods. <i>Journal of Agricultural, Biological, and Environmental Statistics</i> , 2007 , 12, 514-533	1.9	29
97	Comparative mutagenicity of plant-activated aromatic amines using Salmonella strains with different acetyltransferase activities. <i>Environmental and Molecular Mutagenesis</i> , 1994 , 23, 64-9	3.2	29
96	Comparative Mammalian Cell Cytotoxicity of Wastewaters for Agricultural Reuse after Ozonation. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	29
95	Toxicological Comparison of Water, Wastewaters, and Processed Wastewaters. <i>Environmental Science & Environmental Science & En</i>	10.3	28

94	Detecting Departure From Additivity Along a Fixed-Ratio Mixture Ray With a Piecewise Model for Dose and Interaction Thresholds. <i>Journal of Agricultural, Biological, and Environmental Statistics</i> , 2010 , 15, 510-522	1.9	28
93	The biochemical mechanisms of the plant activation of promutagenic aromatic amines. <i>Environmental and Molecular Mutagenesis</i> , 1990 , 15, 236-44	3.2	28
92	Energy of the Lowest Unoccupied Molecular Orbital, Thiol Reactivity, and Toxicity of Three Monobrominated Water Disinfection Byproducts. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	28
91	Comparative Quantitative Toxicology and QSAR Modeling of the Haloacetonitriles: Forcing Agents of Water Disinfection Byproduct Toxicity. <i>Environmental Science & Environmental Science & Environmenta</i>	3 ^{10.3}	27
90	Acetonitrile and N-Chloroacetamide Formation from the Reaction of Acetaldehyde and Monochloramine. <i>Environmental Science & Environmental Science & En</i>	10.3	27
89	In vitro activation of chemicals by plants: a comparison of techniques. <i>Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology</i> , 1986 , 164, 53-8		26
88	Specific-locus mutation assays in Zea mays. A report of the U.S. Environmental Protection Agency Gene-Tox Program. <i>Mutation Research - Reviews in Genetic Toxicology</i> , 1982 , 99, 317-37		26
87	The detection of weak recombinogenic activities in the herbicides alachlor and propachlor using a plant-activation bioassay. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 1977 , 48, 113-6	3.3	26
86	Chloramination of iodide-containing waters: Formation of iodinated disinfection byproducts and toxicity correlation with total organic halides of treated waters. <i>Science of the Total Environment</i> , 2019 , 697, 134142	10.2	25
85	Human cell toxicogenomic analysis of bromoacetic acid: a regulated drinking water disinfection by-product. <i>Environmental and Molecular Mutagenesis</i> , 2010 , 51, 205-14	3.2	25
84	Evaluation of the nuclear DNA Diffusion Assay to detect apoptosis and necrosis. <i>Mutation Research - Genetic Toxicology and Environmental Mutagenesis</i> , 2005 , 586, 38-46	3	25
83	Modulation of the genotoxicity of pesticides reacted with redox-modified smectite clay. <i>Environmental and Molecular Mutagenesis</i> , 2005 , 46, 174-81	3.2	25
82	In vitro enhancement of the mutagenicity of 4-nitro-o-phenylenediamine by plant S-9. <i>Environmental Mutagenesis</i> , 1985 , 7, 73-85		25
81	Genotoxic and clastogenic effects of monohaloacetic acid drinking water disinfection by-products in primary human lymphocytes. <i>Water Research</i> , 2013 , 47, 3282-90	12.5	24
80	Comparative mammalian cell cytotoxicity of wastewater with elevated bromide and iodide after chlorination, chloramination, or ozonation. <i>Journal of Environmental Sciences</i> , 2017 , 58, 296-301	6.4	23
79	Effects of specific monooxygenase and oxidase inhibitors on the activation of 2-aminofluorene by plant cells. <i>Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology</i> , 1989 , 216, 163-78		23
78	Assessing the cytotoxicity of ambient particulate matter (PM) using Chinese hamster ovary (CHO) cells and its relationship with the PM chemical composition and oxidative potential. <i>Atmospheric Environment</i> , 2018 , 179, 132-141	5.3	22
77	Characterization of stable high molecular weight mutagenic product(s) of plant-activated m-phenylenediamine. <i>Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure</i> , 1993 , 299, 111-20		22

76	Use of four short-term tests to evaluate the mutagenicity of municipal water. <i>Journal of Toxicology and Environmental Health - Part A: Current Issues</i> , 1982 , 9, 127-40	3.2	22
<i>75</i>	Monohalogenated acetamide-induced cellular stress and genotoxicity are related to electrophilic softness and thiol/thiolate reactivity. <i>Journal of Environmental Sciences</i> , 2017 , 58, 224-230	6.4	21
74	Spectroscopic Indicators for Cytotoxicity of Chlorinated and Ozonated Effluents from Wastewater Stabilization Ponds and Activated Sludge. <i>Environmental Science & Environmental Science & Environment</i>	4 ^{10.3}	21
73	Use of the diaminobenzoic acid fluorescence assay in conjunction with uv absorbance as a means of quantifying and ascertaining the purity of a DNA preparation. <i>Analytical Biochemistry</i> , 1989 , 180, 314-8	3.1	21
72	Mutagenicity of selected aniline derivatives to Salmonella following plant activation and mammalian hepatic activation. <i>Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure</i> , 1987 , 188, 185-96		21
71	The Activation of Chemicals into Mutagens by Green Plants 1982 , 401-420		21
70	Chapter 3. Microplate-Based Comet Assay. <i>Issues in Toxicology</i> , 2009 , 79-97	0.3	21
69	The impact of disinfection Ct values on cytotoxicity of agricultural wastewaters: Ozonation vs. chlorination. <i>Water Research</i> , 2018 , 144, 482-490	12.5	20
68	Plant activation of m-phenylenediamine by tobacco, cotton, and carrot cell suspension cultures. <i>Environmental and Molecular Mutagenesis</i> , 1987 , 10, 79-88	3.2	20
67	Assessment of the mutagenicity of fractions from s-triazine-treated Zea mays. <i>Mutation Research</i> - Fundamental and Molecular Mechanisms of Mutagenesis, 1988 , 197, 325-36	3.3	20
66	Monohaloacetic acid drinking water disinfection by-products inhibit follicle growth and steroidogenesis in mouse ovarian antral follicles in vitro. <i>Reproductive Toxicology</i> , 2016 , 62, 71-6	3.4	20
65	Predominant N-Haloacetamide and Haloacetonitrile Formation in Drinking Water via the Aldehyde Reaction Pathway. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	20
64	Formation of iodinated trihalomethanes and noniodinated disinfection byproducts during chloramination of algal organic matter extracted from Microcystis aeruginosa. <i>Water Research</i> , 2019 , 162, 115-126	12.5	17
63	Thiol Reactivity Analyses To Predict Mammalian Cell Cytotoxicity of Water Samples. <i>Environmental Science & Environmental Scie</i>	10.3	17
62	Single cell gel electrophoresis analysis of genomic damage induced by ethyl methanesulfonate in cultured tobacco cells. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 1998 , 422, 323-30	3.3	17
61	Plant activation and its role in environmental mutagenesis and antimutagenesis. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 1996 , 350, 163-71	3.3	17
60	Haloacetic Acid Water Disinfection Byproducts Affect Pyruvate Dehydrogenase Activity and Disrupt Cellular Metabolism. <i>Environmental Science & Environmental Science & Environ</i>	10.3	16
59	Formation of DBPs and halogen-specific TOX in the presence of iopamidol and chlorinated oxidants. <i>Chemosphere</i> , 2018 , 202, 349-357	8.4	16

58	Metabolic activation of m-phenylenediamine to products mutagenic in Salmonella typhimurium by medium isolated from tobacco suspension cell cultures. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 1995 , 331, 127-32	3.3	16
57	Antimutagenicity of three isomers of aminobenzoic acid in Salmonella typhimurium. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 1994 , 309, 201-10	3.3	16
56	Effect of drinking water disinfection by-products in human peripheral blood lymphocytes and sperm. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 2014 , 770, 136-43	3.3	15
55	Evaluation of EMS-induced DNA damage in the single cell gel electrophoresis (Comet) assay and with flow cytometric analysis of micronuclei. <i>Teratogenesis, Carcinogenesis, and Mutagenesis</i> , 2003 , Suppl 2, 1-11		15
54	The use of cell-free systems in plant activation studies. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 1988 , 197, 173-82	3.3	15
53	Induction of micronuclei in maize root-tip cells and a correlation with forward mutation at the yg2 locus. <i>Environmental Mutagenesis</i> , 1985 , 7, 821-32		15
52	Chlorotyrosines versus Volatile Byproducts from Chlorine Disinfection during Washing of Spinach and Lettuce. <i>Environmental Science & Environmental Sc</i>	10.3	14
51	Differentiation of Total Organic Brominated and Chlorinated Compounds in Total Organic Halide Measurement: A New Approach with an Ion-Chromatographic Technique. <i>ACS Symposium Series</i> , 2000 , 330-342	0.4	14
50	Genotoxicity of m-phenylenediamine and 2-aminofluorene in Salmonella typhimurium and human lymphocytes with and without plant activation. <i>Environmental and Molecular Mutagenesis</i> , 1995 , 26, 171	1- 3 ²	14
49	Iodoacetic acid inhibits follicle growth and alters expression of genes that regulate apoptosis, the cell cycle, estrogen receptors, and ovarian steroidogenesis in mouse ovarian follicles. <i>Reproductive Toxicology</i> , 2020 , 91, 101-108	3.4	14
48	Global Transcriptional Analysis of Nontransformed Human Intestinal Epithelial Cells (FHs 74 Int) after Exposure to Selected Drinking Water Disinfection By-Products. <i>Environmental Health Perspectives</i> , 2019 , 127, 117006	8.4	14
47	Alteration of mammalian-cell toxicity of pesticides by structural iron(II) in ferruginous smectite. <i>Environmental Science & Environmental Science & amp; Technology</i> , 2004 , 38, 4383-9	10.3	13
46	Modulation of the mutagenicity of heterocyclic amines by organophosphate insecticides and their metabolites. <i>Mutation Research - Genetic Toxicology and Environmental Mutagenesis</i> , 2003 , 536, 103-15	3	13
45	Isolating antigenotoxic components and cancer cell growth suppressors from agricultural by-products. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 2001 , 480-481, 109-20	3.3	13
44	Disinfection byproducts and halogen-specific total organic halogen speciation in chlorinated source waters - The impact of iopamidol and bromide. <i>Journal of Environmental Sciences</i> , 2020 , 89, 90-101	6.4	13
43	Toxicity of chlorinated algal-impacted waters: Formation of disinfection byproducts vs. reduction of cyanotoxins. <i>Water Research</i> , 2020 , 184, 116145	12.5	12
42	Antimutagenic activity of chemical fractions isolated from a commercial soybean processing by-product. <i>Teratogenesis, Carcinogenesis, and Mutagenesis</i> , 1999 , 19, 121-35		10
41	High-Resolution Mass Spectrometry Identification of Novel Surfactant-Derived Sulfur-Containing Disinfection Byproducts from Gas Extraction Wastewater. <i>Environmental Science & Disinfection</i> 2020, 54, 9374-9386	10.3	9

40	Plant-activation of the bicyclic aromatic amines benzidine and 4-aminobiphenyl. <i>Environmental and Molecular Mutagenesis</i> , 1997 , 29, 81-90	3.2	9
39	Mutagenic synergy between paraoxon and mammalian or plant-activated aromatic amines. <i>Environmental and Molecular Mutagenesis</i> , 1997 , 30, 312-320	3.2	8
38	Mutagenic analysis of 2,3-diaminophenazine and 2-amino-3-hydroxyphenazine in Salmonella strains expressing different levels of O-acetyltransferase with and without plant and mammalian activation. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 1996 , 372, 65-74	3.3 1	8
37	Molecular dosimetry studies of forward mutation induced at the yg2 locus in maize by ethyl methanesulfonate. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 1989 , 211, 231-41	3.3	8
36	Calibration of the maize yg2 assay using gamma radiation and ethylmethanesulfonate. <i>Environmental Mutagenesis</i> , 1984 , 6, 781-95		8
35	Impact of chlorine exposure time on disinfection byproduct formation in the presence of iopamidol and natural organic matter during chloramination. <i>Journal of Environmental Sciences</i> , 2019 , 78, 204-214	6.4	8
34	Making Swimming Pools Safer: Does Copper-Silver Ionization with Chlorine Lower the Toxicity and Disinfection Byproduct Formation?. <i>Environmental Science & Environmental Scie</i>	10.3	8
33	Drivers of Disinfection Byproduct Cytotoxicity in U.S. Drinking Water: Should Other DBPs Be Considered for Regulation?. <i>Environmental Science & Environmental Science & Envir</i>	10.3	8
32	Pentachlorophenol-mediated mutagenic synergy with aromatic amines in Salmonella typhimurium. <i>Mutation Research - Genetic Toxicology and Environmental Mutagenesis</i> , 1998 , 420, 115-24	3	7
31	Investigation of nuclear enzyme topoisomerase as a putative molecular target of monohaloacetonitrile disinfection by-products. <i>Journal of Environmental Sciences</i> , 2017 , 58, 231-238	6.4	6
30	Influence of Anaerobic Mesophilic and Thermophilic Digestion on Cytotoxicity of Swine Wastewaters. <i>Environmental Science & Environmental Science & En</i>	10.3	6
29	Development and performance characterization of a polyamide nanofiltration membrane modified with covalently bonded aramide dendrimers. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	6
28	Mutagenic synergy between paraoxon and plant-activated m-phenylenediamine or 2-acetoxyacetylaminofluorene. <i>Environmental and Molecular Mutagenesis</i> , 1996 , 27, 59-66	3.2	6
27	Analysis, Occurrence, and Toxicity of Haloacetaldehydes in Drinking Waters: Iodoacetaldehyde as an Emerging Disinfection By-Product. <i>ACS Symposium Series</i> , 2015 , 25-43	0.4	5
26	A New Assessment of the Cytotoxicity and Genotoxicity of Drinking Water Disinfection By-Products. <i>ACS Symposium Series</i> , 2000 , 16-27	0.4	5
25	Induction of forward mutation at the yg2 locus in maize by ethylnitrosourea. <i>Environmental Mutagenesis</i> , 1985 , 7, 155-62		5
24	Fate and transport of estrogenic compounds in an integrated swine manure treatment systems combining algal-bacterial bioreactor and hydrothermal processes for improved water quality. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 16800-16813	5.1	4
23	Analysis of the genotoxicity of municipal sewage sludge extracts with sister chromatid exchange in cultured human lymphocytes. <i>Water, Air, and Soil Pollution</i> , 1988 , 42, 117	2.6	4

22	Iodoacetic acid affects estrous cyclicity, ovarian gene expression, and hormone levels in mice□ <i>Biology of Reproduction</i> , 2021 , 105, 1030-1042	3.9	4
21	Plant genetic assays and their use in studies on environmental mutagenesis in developing countries. <i>Basic Life Sciences</i> , 1985 , 34, 249-68		4
20	Cytotoxicity analysis of water disinfection byproducts with a micro-pillar microfluidic device. <i>Lab on A Chip</i> , 2012 , 12, 3891-900	7.2	3
19	Characterization of a macromolecular matrix isolated from tobacco suspension cell cultures and its role in the activation of promutagenic m-phenylenediamine. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 1997 , 379, 191-9	3.3	3
18	Involvement of nitroreductase and O-acetyltransferase on the mutagenicity of plant-activated benzidine and 4-aminobiphenyl. <i>Environmental and Molecular Mutagenesis</i> , 1997 , 30, 330-8	3.2	3
17	The plant activation of m-phenylenediamine by Tradescantia clone 03 and clone 4430 cells in liquid suspension culture. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 1988 , 197, 303-12	3.3	3
16	Preferential Halogenation of Algal Organic Matter by Iodine over Chlorine and Bromine: Formation of Disinfection Byproducts and Correlation with Toxicity of Disinfected Waters <i>Environmental Science & Environmental Scien</i>	10.3	3
15	Composite toxicity assays for enhanced assessment of decentralized potable reuse systems. <i>Environmental Science: Water Research and Technology</i> , 2020 , 6, 3306-3315	4.2	2
14	In vitro effects-based method and water quality screening model for use in pre- and post-distribution treated waters. <i>Science of the Total Environment</i> , 2021 , 768, 144750	10.2	2
13	Analysis of mutagens with single cell gel electrophoresis, flow cytometry, and forward mutation assays in an isolated clone of Chinese hamster ovary cells 1998 , 32, 360		2
12	Plant Genetic Assays to Evaluate Complex Environmental Mixtures 1985, 45-64		2
11	Mutant spectra analysis at hisG46 in Salmonella typhimurium strain YG1029 induced by mammalian S9- and plant-activated aromatic amines. <i>Teratogenesis, Carcinogenesis, and Mutagenesis</i> , 2003 , Suppl 1, 47-60		1
10	Mutation spectrum of spontaneous frameshift revertants in yeast using double-strand gap repair. <i>Environmental and Molecular Mutagenesis</i> , 1992 , 20, 84-8	3.2	1
9	Interference of Bis-Tris buffer with the diaminobenzoic acid fluorescence assay used to quantify DNA. <i>Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis</i> , 1989 , 226, 263-6		1
8	Plant dependent mutation assays. <i>Basic Life Sciences</i> , 1982 , 21, 327-52		1
7	Absence of genotoxicity induced by 3H and 14C label in Salmonella typhimurium an Bacillus subtilus. <i>Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis</i> , 1982 , 104, 29-33		1
6	Chloramination of iopamidol- and bromide-spiked waters containing natural organic matter. <i>Water Science and Technology: Water Supply</i> , 2021 , 21, 886-898	1.4	1
5	An investigation of some Turkish herbal medicines in Salmonella typhimurium and in the COMET assay in human lymphocytes 1996 , 16, 125		1

4

3	Blocking the plant activation of promutagenic aromatic amines by peroxidase inhibitors. <i>Basic Life Sciences</i> , 1993 , 61, 201-17	
2	Comparison of Estrogenic, Spectroscopic, and Toxicological Analyses of Pilot-Scale Water, Wastewaters, and Processed Wastewaters at Select Military Installations. <i>Environmental Science & Earthoology</i> , 2021 , 55, 13103-13112	10.3
1	A Computerized Degree of Hazard Assessment for Evaluation of Wastes: An Innovative Aid to Management of Residuals. <i>Water Science and Technology</i> , 1989 , 21, 821-831	2.2

The Maize-Microbe Bioassay: A Unique Approach to Environmental Mutagenesis 1983, 151-165

1